Table of contents

Volume 24

Number 3, March 2014

Previous issue Next issue

Selected papers from the 7th International Conference on Microtechnologies in Medicine and Biology (MMB 2013)

Buy this issue in print

Preface

030301

and

In this special section of Journal of Micromechanics and Microengineering are a collection of the best microengineering papers presented at the 7th International Conference on Microtechnologies in Medicine and Biology (MMB 2013) which took place in the seaside town of Marina del Rey, California, USA on 10–12 April, 2013. During the 3-day conference, participants enjoyed talks from 6 invited keynote speakers and 125 flash oral/poster presentations.

The MMB conference is a biennial meeting with the primary purpose of fostering interactions between biologists and medical researchers, clinicians, chemists, physicists and engineers to enhance and strengthen the potential microtechnologies that will revolutionize the fields of medicine and biological sciences. The conference possesses a unique format where all poster presenters provide a brief 60 s oral presentation highlighting their research. This format was devised to provide training and exposure for young researchers, especially PhD students and postdocs, in the field and stimulate interdisciplinary exchanges. Therefore, MMB provides an intimate intellectual venue the facilitate discussions and collaborations to advance new research tools and technologies for medicine and biological sciences.

The MMB conference series was co-founded by Professor David Beebe (University of Wisconsin—Madison) and Professor André Dittmar (University of Lyon) and was the first international meeting to provide a forum focusing on emerging applications of microtechnologies to unmet needs in medicine and biology. The series was held for the first time in 2000, in Lyon, France and followed by Madison, USA (2002), Oahu Island in Hawaii, USA (2005), Okinawa, Japan (2006), Québec City, Canada (2009), Lucerne, Switzerland (2011), and Marina del Rey, USA (2013). The next conference will be held in Seoul, Korea in 2015.

This collection of articles highlights recent progress in microtechnologies with medical and biological applications. We are grateful to the many authors who contributed their research achievements to this exciting issue and to the anonymous reviewers for their invaluable insights and suggestions. We would also like to express our thanks to our colleagues on the international steering committee for their dedicated review of the selected presentations that appears at the conference.

Finally, we appreciate the support of the editorial staff of Journal of Micromechanics and Microengineering for this inaugural MMB special issue. We look forward to continued collaboration in future MMB conferences.

Special Section Papers

034001

, , , , , and

Substrates for plasmonic sensors in a flow-through configuration are mostly fabricated by cost-intensive clean room processes, whereas high-volume diagnostic devices are typically made of polymers. This contrast could limit the application of this efficient flow regime in mass-produced devices. In order to become more compatible with polymer processing, a commercially available polycarbonate filter membrane has been evaluated as a substrate for plasmonic flow-through biosensing. The membrane has been sputtered with gold and its sensitivity to changes of bulk refractive index has been determined by transmission measurements using sodium chloride solutions. The sensitivity has been evaluated by determining the wavelength barycenter in a wavelength interval from 470 to 800 nm. The highest determined sensitivity to variations in bulk refractive index is 117 nm RIU−1 (refractive index units). This sensitivity is smaller than that of regular arrays of nanoholes. But the integrating character of the applied evaluation leads to an average standard deviation of 0.005 nm which results in a resolution of 4.1 ⋅ 10−5 RIU. This resolution is sufficient for the detection of protein adsorptions. The proof of principle has been shown with bovine serum albumin and a simplified immunoassay, which consists of the sequential addition of protein A, an IgG antibody and its corresponding antigen. The results show the applicability of this polymeric membrane for biosensing applications. These substrates could enable plasmonic sensing in a flow-through configuration in disposable diagnostic devices.

034002

, , and

Flow cytometry is a powerful technique capable of simultaneous multi-parametric analysis of heterogeneous cell populations for research and clinical applications. In recent years, the flow cytometer has been miniaturized and made portable for application in clinical- and resource-limited settings. The sample preparation procedure, i.e. labeling of cells with antibodies conjugated to fluorescent labels, is a time consuming (∼45 min) and labor-intensive procedure. Microfluidics provides enabling technologies to accomplish rapid and automated sample preparation. Using an integrated microfluidic device consisting of a labeling and washing module, we demonstrate a new protocol that can eliminate sample handling and accomplish sample and reagent metering, high-efficiency mixing, labeling and washing in rapid automated fashion. The labeling module consists of a long microfluidic channel with an integrated chaotic mixer. Samples and reagents are precisely metered into this device to accomplish rapid and high-efficiency mixing. The mixed sample and reagents are collected in a holding syringe and held for up to 8 min following which the mixture is introduced into an inertial washing module to obtain 'analysis-ready' samples. The washing module consists of a high aspect ratio channel capable of focusing cells to equilibrium positions close to the channel walls. By introducing the cells and labeling reagents in a narrow stream at the center of the channel flanked on both sides by a wash buffer, the elution of cells into the wash buffer away from the free unbound antibodies is accomplished. After initial calibration experiments to determine appropriate 'holding time' to allow antibody binding, both modules were used in conjunction to label MOLT-3 cells (T lymphoblast cell line) with three different antibodies simultaneously. Results confirm no significant difference in mean fluorescence intensity values for all three antibodies labels (p < 0.01) between the conventional procedure (45 min) and our microfluidic approach (12 min).

034003

, , and

Stretchable micro-electrode arrays (SMEAs) are useful tools to study the electrophysiology of living cells seeded on the devices under mechanical stimulation. For such applications, the SMEAs are used as cell culture substrates; therefore, the surface topography and mechanical properties of the devices should be minimally affected by the embedded stretchable electrical interconnects. In this paper, a novel design and micro-fabrication technology for a pneumatically actuated SMEA are presented to achieve stretchability with minimal surface area dedicated to the electrical interconnects and a well-defined surface strain distribution combined with integrated diverse micro-patterns to enable alignment and directional stretching of cells. The special mechanical design also enables the SMEA to have a prolonged electro-mechanical fatigue life time required for long-term cyclic stretching of the cell cultures (stable resistance of electrical interconnects for more than 160 thousand cycles of 20% stretching and relaxing). The proposed fabrication method is based on the state of the art micro-fabrication techniques and materials and circumvents the processing problems associated with using unconventional methods and materials to fabricate stretchable electrode arrays. The electrochemical impedance spectroscopy characterization of the SMEA shows 4.5 MΩ impedance magnitude at 1 kHz for a TiN electrode 12 um in diameter. Cell culture experiments demonstrate the robustness of the SMEAs for long-term culturing experiments and compatibility with inverted fluorescent microscopy.

034004

, , , , and

In this study, we report on a novel, multi-use, high-resolution NMR/MRI micro-detection probe for the screening of flat samples. It is based on a Helmholtz coil pair in the centre of the probe, built out of two 1.5 mm diameter wirebonded copper coils, resulting in a homogeneous distribution of the magnetic field. For liquids and suspensions, custom fabricated, disposable sample inserts are placed inside the pair and aligned automatically, preventing the sensor and the samples from contamination. The sensor was successfully tested in a 500 MHz (11.7 T) spectrometer where we achieved a linewidth of 1.79 Hz (3.58 ppb) of a water phantom. Nutation experiments revealed an overall B1-field uniformity of 92% (ratio in signal intensity at flip angles of 810°/90°), leading to a homogeneous excitation of concentration limited samples. To demonstrate the imaging capabilities of the detector, we acquired images of a solid and a liquid sample—of a piece of leaf, directly inserted into the probe and of a sample insert, filled with a suspension of 50 μm diameter polymer beads and deionized water, with in-plane resolutions of 20 × 20 μ m2 and 10 × 10 μ m2, respectively.

034005

, , , and

Low-cost, easily-fabricated and power-efficient microvalves are necessary for many microfluidic lab-on-a-chip applications. In this study, we present a simple, low-power, scalable, CMOS-compatible magnetic actuator for microvalve applications composed of a paramagnetic bead as the ball valve over a picoliter reaction well etched into a silicon substrate. The paramagnetic bead, composed of either pure FeSi or magnetite in a SiO2 matrix, is actuated by the local magnetic field gradient generated by a microcoil in an aqueous environment, and the reaction well is situated at the microcoil center. A permanent magnet beneath the microvalve device provides an external magnetic biasing field that magnetizes the bead, enabling bidirectional actuation and reducing the current required to actuate the bead to a level below 10 mA. The vertical and radial magnetic forces exerted on the bead by the microcoil were measured for both pure FeSi and composite beads and agree well with the predictions of 2D axisymmetric finite element method models. Vertical forces were within a range of 13–80 nN, and radial forces were 11–60 nN depending on the bead type. The threshold current required to initiate bead actuation was measured as a function of bead diameter and is found to scale inversely with volume for small beads, as expected based on the magnetic force model. To provide an estimate of the stiction force acting between the bead and the passivation layer on the substrate, repeated actuation trials were used to study the bead throw distance for substrates coated with silicon dioxide, Parylene-C, and photoresist. The stiction observed was lowest for a photoresist-coated substrate, while silicon dioxide and Parylene-C coated substrates exhibited similar levels of stiction.

034006

, , , , and

Microfluidic systems enable reactions and assays on the scale of nanoliters. However, at this scale non-uniformities in sample delivery become significant. To determine the fundamental minimum sample volume required for a particular device, a detailed understanding of mass transport is required. Co-flowing laminar streams are widely used in many devices, but typically only in the steady-state. Because establishing the co-flow steady-state consumes excess sample volume and time, there is a benefit to operating devices in the transient state, which predominates as the volume of the co-flow reactor decreases. Analysis of the co-flow transient has been neglected thus far. In this work we describe the fabrication of a pneumatically controlled microfluidic injector constructed to inject a discrete 50 nL bolus into one side of a two-stream co-flow reactor. Using dye for image analysis, injections were performed at a range of flow rates from 0.5–10 µL min−1, and for comparison we collected the co-flow steady-state data for this range. The results of the image analysis were also compared against theory and simulations for device validation. For evaluation, we established a metric that indicates how well the mass distribution in the bolus injection approximates steady-state co-flow. Using such analysis, transient-state injections can approximate steady-state conditions within pre-defined errors, allowing straightforward measurements to be performed with reduced reagent consumption.

Papers

035001

, , , , , and

This paper presents an advanced study including the design, characterization and theoretical analysis of a capacitive vibration energy harvester. Although based on a resonant electromechanical device, it is intended for operation in a wide frequency band due to the combination of stop-end effects and a strong biasing electrical field. The electrostatic transducer has an interdigited comb geometry with in-plane motion, and is obtained through a simple batch process using two masks. A continuous conditioning circuit is used for the characterization of the transducer. A nonlinear model of the coupled system 'transduce-conditioning circuit' is presented and analyzed employing two different semi-analytical techniques together with precise numerical modelling. Experimental results are in good agreement with results obtained from numerical modelling. With the 1 g amplitude of harmonic external acceleration at atmospheric pressure, the system transducer-conditioning circuit has a half-power bandwidth of more than 30% and converts more than 2 µW of the power of input mechanical vibrations over the range of 140 and 160 Hz. The harvester has also been characterized under stochastic noise-like input vibrations.

035002

, , and

The first bi-directional thermoelectric based Knudsen pump is made using a multifunctional nanoporous P-type bismuth telluride (Bi2Te3) thermoelectric material. The nanoporous material has been fabricated using a cold pressing and sintering technique under an argon atmosphere. Analysis of the nanoporous thermoelectric shows the average grain size is 680 nm, the pore radius ranges from 205 to 756 nm, and the average pore radius is 434 nm corresponding to a Knudsen number of 0.075 in the transitional flow regime. Gas flow due to the principle of thermal transpiration was demonstrated using a thermal gradient generated by running current through the thermoelectric, and measuring the gas flow rate and pressure. For an input power of 3.32 W, a maximum of 300 Pa pressure and 1.8 µl min−1 flow rate was observed. A reduction of the pore size down to 25 nm, and an improvement of the electrical contact resistance should lead to a 16 time increase in the generated pressure, and reduction in the consumed power respectively.

035003

, , , , , , and

The recently developed alumina and parylene C bilayer encapsulation improved the lifetime of neural interfaces. Tip deinsulation of Utah electrode array based neural interfaces is challenging due to the complex 3D geometries and high aspect ratios of the devices. A three-step self-aligned process was developed for tip deinsulation of bilayer encapsulated arrays. The deinsulation process utilizes laser ablation to remove parylene C, O2 reactive ion etching to remove carbon and parylene residues, and buffered oxide etch to remove alumina deposited by atomic layer deposition, and expose the IrOx tip metallization. The deinsulated iridium oxide area was characterized by scanning electron microscopy, atomic force microscopy, x-ray photoelectron spectroscopy, and electrochemical impedance spectroscopy to determine the morphology, surface morphology, composition, and electrical properties of the deposited layers and deinsulated tips. The alumina layer was found to prevent the formation of micro cracks on iridium oxide during the laser ablation process, which has been previously reported as a challenge for laser deinsulation of parylene films. The charge injection capacity, charge storage capacity, and impedance of deinsulated iridium oxide were characterized to determine the deinsulation efficacy compared to parylene-only insulation. Deinsulated iridium oxide with bilayer encapsulation had higher charge injection capacity (240 versus 320 nC) and similar electrochemical impedance (2.5 versus 2.5 kΩ) compared to deinsulated iridium oxide with only parylene coating for an area of 2 × 10−4 cm2. Tip impedances were in the range of 20–50 kΩ, with a median of 32 kΩ and a standard deviation of 30 kΩ, showing the effectiveness of the self-aligned deinsulation process for alumina and parylene C bilayer encapsulation. The relatively uniform tip impedance values demonstrated the consistency of tip exposures.

035004

, , , , and

Electrostatically-driven, cantilever-shaped resonators under a pair of parallel-plate electrodes with the 'pull–pull drive' scheme have been demonstrated and characterized. Theoretical analyses have been established based on the force balance among the electrostatic excitation, the mechanical elastic restoring force and air damping reactions. It is found that the 'pull–pull drive' setup can exhibit nonlinear characteristic in the output response, and consequently achieve about 3.8 times the maximum resonance amplitude as compared with the conventional single electrode setup. Furthermore, by adjusting the position of the cantilever between the parallel-plate electrodes, the magnitude of pull-in voltage as well as the maximum resonance amplitude can be changed. As such, the 'pull–pull drive' scheme provides an easy and alternative way to increase the response of the electrostatically-actuated resonators for various potential applications in resonator-based sensors and actuators.

035005

and

In this paper, a novel in-line type frequency detector is proposed based on a MEMS membrane for X-band applications. In this design, the MEMS membrane stands above the signal line of the CPW transmission line and acts as a coupling capacitance. A certain percentage of the incident power, as a function of the frequency, is coupled to the microwave power sensors. Finally, the frequency of the incident RF signal is able to be deduced by measuring the output thermovoltage of the microwave power sensor based on the Seebeck effect. The design, lumped equivalent circuit model and simulation are presented. The in-line type power sensor is fabricated by the GaAs MMIC process based on MEMS technology. The measured return loss is less than −13 dB and the insertion loss is better than 1.3 dB over the frequency band of 8–12 GHz. The RF frequency measurement demonstrates that the output thermovoltage increases from 0.22 to 0.35 mV when the frequency varies from 8 to 12 GHz under the input power of 10 dBm.

035006

, , , , , , and

In nature, a frog can easily rest on a lotus leaf even though the frog's weight is several times the weight of the lotus leaf. Inspired by the lotus leaf, we fabricated a planar superhydrophobic microboat (SMB) with a superhydrophobic upper surface on a PDMS sheet which was irradiated by a focused femtosecond laser. The SMB can not only float effortlessly over the water surface but can also hold up some heavy objects, exhibiting an excellent loading capacity. The water surface is curved near the edge of the upper surface and the SMB's upper edge is below the water level, greatly enhancing the displacement. Experimental results and theoretical analysis demonstrate that the superhydrophobicity on the edge of the upper surface is responsible for the SMB's large loading capacity. Here, we call it the 'superhydrophobic edge effect'.

035007

, and

We have developed ultraviolet (UV)-assisted ozone steam etching as a novel SU-8 removal technology. This technology is expected to remove SU-8 at a higher etch rate compared to a conventional wafer cleaning process based on ozone water immersion. An etching apparatus prototyped in this study achieves an etch rate greater than 100 nm min−1 by intermittently rotating an SU-8-coated substrate on a spinner for spinning out the etching products under UV irradiation. Its complete removability is also verified by analyzing the surfaces of etched samples via scanning electron microscopy and x-ray photoelectron spectroscopy. In a micromolding process, the non-swelling removability is successfully demonstrated by removing a SU-8 sacrificial mold and leaving electroplated metal mushroom microstructures without destruction. Such a structure cannot be released by conventional resist strippers, because it is lifted up due to resist swelling. We believe this etching technology becomes a viable option to remove chemically-stable polymers such as SU-8 in microelectromechanical systems.

035008

, and

We use a simple and inexpensive microfluidic device, which is based on microscope glass slides and two tapered glass capillaries, to produce monodisperse microbubbles. The innermost capillary used for transporting the gas is inserted into the second capillary, with its 2 μm sharp tip aligned with the center of the converging–diverging throat of the second capillary. This configuration provides a small and smooth gas flow rate, and a high velocity gradient at the tube outlet. Highly monodisperse microbubbles with diameters ranging from 3.5 to 60 microns have been successfully produced at a rate of up to 40 kHz. A simple scaling law, which is based on the capillary number and liquid-to-gas flow rate ratio, successfully predicts the bubble size.

035009

, , , , , , , and

A method for fabricating SU-8 moulds on glass substrates is presented. A common thin negative photoresist was coated on the glass slide as an adhesive layer, and then SU-8 was patterned on the adhesive layer. The presence of the adhesive layer improved the lifetime of a SU-8 mould from a few cycles to over 50 cycles. Moreover, the fabrication of the adhesive layer is quite simple and no additional equipment is required. The effects of the adhesion behavior of the negative photoresist and SU-8 on substrates on the durability of the SU-8 mould were investigated. The work of adhesion of the common thin negative photoresist on glass was 51.2 mJ m−2, which is 22.5% higher than that of SU-8 on silicon and 32.3% higher than that of SU-8 on glass. The abilities of the method for replicating high-aspect-ratio microstructures were also tested. One SU-8 mould with 60 × 60 array micropillars with aspect ratios lower than 3 could be used to cast at least 20 polydimethylsiloxane devices.

035010

, and

For heterogeneous integration in many More-than-Moore applications, surface preparation is the key step to realizing well-bonded multiple substrates for electronics, photonics, fluidics and/or mechanical components without a degradation in performance. Therefore, it is critical to understand how various processing and environmental conditions affect their surface properties. In this paper, we investigate the effects of oxygen plasma and humidity on some key surface properties such as the water contact angle, roughness and hardness of three materials: silicon (Si), silicon dioxide (SiO2) and glass, and their impact on bondability. The low surface roughness, high surface reactivity and high hydrophilicity of Si, SiO2 and glass at lower activation times can result in better bondability. Although, the surface reactivity of plasma-ambient-humidity-treated Si and SiO2 is considerably reduced, their reduction of roughness and increase of hydrophilicity may enable good bonding at low temperature heating due to augmented hydroxyl groups. The decrease of hardness of Si and SiO2 with increased activation time is attributed to higher surface roughness and the formation of amorphous layers of Si. While contact angle and surface roughness results show a correlation with bondability, the role of hardness on bondability requires further investigation.

035011

, and

We have developed a multilayer, multichannel silicon-based microreactor that uses elemental fluorine as a reagent and generates hydrogen fluoride as a byproduct. Nested potassium hydroxide etching (using silicon nitride and silicon oxide as masking materials) was developed to create a large number of channels (60 reaction channels connected to individual gas and liquid distributors) of significantly different depths (50–650 µm) with sloped walls (54.7° with respect to the (1 0 0) wafer surface) and precise control over their geometry. The wetted areas were coated with thermally grown silicon oxide and electron-beam evaporated nickel films to protect them from the corrosive fluorination environment. Up to four Pyrex layers were anodically bonded to three silicon layers in a total of six bonding steps to cap the microchannels and stack the reaction layers. The average pinhole density in as-evaporated films was 3 holes cm−2. Heating during anodic bonding (up to 350 °C for 4 min) did not significantly alter the film composition. Upon fluorine exposure, nickel films (160 nm thick) deposited on an adhesion layer of Cr (10 nm) over an oxidized silicon substrate (up to 500 nm thick SiO2) led to the formation of a nickel fluoride passivation layer. This microreactor was used to investigate direct fluorinations at room temperature over several hours without visible signs of film erosion.

035012

, , , and

In this paper, we report on a microfluidic device with a multi-valve system to conduct several exposure tests on Caenorhabditis elegans (C. elegans) simultaneously. It has pneumatic valves and no-moving-parts (NMP) valves. An NMP valve is incorporated with a chamber and enables the unidirectional movement of C. elegans in the chamber; once worms are loaded into the chamber, they cannot exit, regardless of the flow direction. To demonstrate the ability of the NMP valve to handle worms, we made a microfluidic device with three chambers. Each chamber was used to expose worms to Cd and Cu solutions, and K-medium. A pair of electrodes was installed in the device and the capacitance in-between the electrode was measured. When a C. elegans passed through the electrodes, the capacitance was changed. The capacitance change was proportional to the body volume of the worm, thus the body volume change by the heavy metal exposure was measured in the device. Thirty worms were divided into three groups and exposed to each solution. We confirmed that the different solutions induced differences in the capacitance changes for each group. These results indicate that our device is a viable method for simultaneously analyzing the effect of multiple stimuli on C. elegans.

035013

, , and

This paper details the development of low-stress, heavily-doped polycrystalline 3C–SiC films suitable for microelectromechanical systems applications. The films were deposited on 100 mm-diameter silicon (Si) and silicon dioxide (SiO2)-coated Si wafers in a large-volume, low-pressure chemical vapor deposition furnace using dichlorosilane (DCS) (SiH2Cl2) and acetylene (C2H2) as precursors and ammonia (NH3) as the dopant source gas. The effects of NH3 and deposition pressure on the deposition rate, film residual stress and electrical resistivity were studied. Deposition parameters optimized for a combination of resistivity and residual stress yielded an average resistivity of 0.02 Ω cm and a residual tensile stress of 59 MPa as measured using wafer-scale methods. X-ray photoelectron spectroscopy indicated that the nitrogen concentration in the films was less than 0.5 at%. Variations in the flow rate of NH3 did not affect the surface roughness of the films, but changes in deposition pressure had an obvious effect on the surface roughness.

035014

, , , and

A highly emissive Si-based microhotplate based on self-organizing nanostructures is presented. The silicon was structured by a self-masking deep reactive ion etching process resulting in needle-like non-periodical microstructures. Evaporated platinum settles in a kind of glancing angle deposition as well-defined nanocrystals on the silicon microstructures. Finite-difference time-domain simulation allowed the evaluation of the ideal platinum thickness for maximized infrared absorption and emission. We measured the hemispherical spectral transmittance and reflectivity of the fabricated surfaces and found the hemispherical spectral absorbance to be up to 0.97 in the investigated wavelength range. To demonstrate the advantages of these micro-nano-structures, we present the fabrication and characterization of a thermal infrared hotplate-emitter. With integrated Pt-on-Si-needles, the emitter shows a 2.6 times higher IR emission without wavelength-dependent interference patterns as compared to an uncoated Si-based emitter at the same membrane temperature.

035015

, , , , , and

A silicon six-axis force–torque sensor is designed and realized to be used for measurement of the power transfer between the human body and the environment. Capacitive read-out is used to detect all axial force components and all torque components simultaneously. Small electrode gaps in combination with mechanical amplification by the sensor structure result in a high sensitivity. The miniature sensor has a wide force range of up to 50 N in normal direction, 10 N in shear direction and 25 N mm of maximum torque around each axis.

035016

, , and

This study designs and implements a single unit three-axis magnetic sensor using the standard TSMC 0.35 µm 2P4M CMOS process. The magnetic sensor consists of springs, a proof-mass with embedded magnetic coils, and sensing electrodes. Two sets of in-plane magnetic coils respectively arranged in two orthogonal axes are realized using the stacking of metal and tungsten layers in the CMOS process. The number of turns for the proposed in-plane magnetic-coil is not restricted by the space and thin film layers of the CMOS process. The magnetic coils could respectively generate Lorentz and electromagnetic forces by out-of-plane and in-plane magnetic fields to excite the spring–mass structure. Capacitance sensing electrodes could detect the dynamic response of the spring–mass structure to determine the magnetic fields. Measurements indicate the typical sensitivities of the sensor are 0.21 µV µT−1 (x-axis), 0.20 µV µT−1 (y-axis), and 0.90 µV µT−1 (z-axis) at 1 atm. Moreover, the resolutions of the sensor are respectively 384 nT rtHz−1 for the x-axis, 403 nT rtHz−1 for the y-axis, and 62 nT rtHz−1 for the z-axis at 1 atm. The presented magnetic sensor could monolithically integrate with other CMOS-MEMS devices for various applications.

035017
The following article is Open access

, , and

Polydimethylsiloxane (PDMS) elastomers are extensively used for soft lithographic replication of microstructures in microfluidic and micro-engineering applications. Elastomeric microstructures are commonly required to fulfil an explicit mechanical role and accordingly their mechanical properties can critically affect device performance. The mechanical properties of elastomers are known to vary with both curing and operational temperatures. However, even for the elastomer most commonly employed in microfluidic applications, Sylgard 184, only a very limited range of data exists regarding the variation in mechanical properties of bulk PDMS with curing temperature. We report an investigation of the variation in the mechanical properties of bulk Sylgard 184 with curing temperature, over the range 25 °C to 200 °C. PDMS samples for tensile and compressive testing were fabricated according to ASTM standards. Data obtained indicates variation in mechanical properties due to curing temperature for Young's modulus of 1.32–2.97 MPa, ultimate tensile strength of 3.51–7.65 MPa, compressive modulus of 117.8–186.9 MPa and ultimate compressive strength of 28.4–51.7 GPa in a range up to 40% strain and hardness of 44–54 ShA.

035018

, , and

In this paper, the prototyping of a new piezoresistive microforce sensor is presented. An original design taking advantage of both the mechanical and bulk piezoresistive properties of silicon is presented, which enables the easy fabrication of a very small, large-range, high-sensitivity with high integration potential sensor. The sensor is made of two silicon strain gauges for which widespread and known microfabrication processes are used. The strain gauges present a high gauge factor which allows a good sensitivity of this force sensor. The dimensions of this sensor are 700 μm in length, 100 μm in width and 12 μm in thickness. These dimensions make its use convenient with many microscale applications, notably its integration in a microgripper. The fabricated sensor is calibrated using an industrial force sensor. The design, microfabrication process and performances of the fabricated piezoresistive force sensor are innovative thanks to its resolution of 100 nN and its measurement range of 2 mN. This force sensor also presents a high signal-to-noise ratio, typically 50 dB when a 2 mN force is applied at the tip of the force sensor.

035019

, and

This paper presents a new post-CMOS-compatible integration scheme for AlN-based MEMS devices. The proposed scheme integrates molybdenum (Mo) bottom electrodes with an amorphous silicon (a-Si) sacrificial layer, which is etched using XeF2 to release the MEMS structures. This integration approach faces two potential issues, which are solved in this work: (i) poor adhesion of AlN with a-Si, and (ii) XeF2 attacking the Mo electrode during the removal of the a-Si sacrificial layer. The adhesion problem was solved by introducing a thin oxide layer between a-Si and AlN. The sidewalls of the Mo electrodes were protected by a 0.2 µm thick SiN spacer layer from the XeF2 attack. The robustness of the integration scheme was verified by fabricating an FBAR band pass filter. RF measurements on the FBAR band pass filter show that the proposed integration works well and can be utilized for other AlN-based MEMS devices in post-CMOS applications.

035020

, , and

We achieved a reduction in the misregistration of overlying patterns printed on a flexible plastic film and a drastically shorter processing time with fully printed thin-film transistor (TFT) fabrication. This was achieved using a newly developed wet-on-wet (WoW) printing process wherein a subsequent layer can be printed on a previous semi-dried (not-sintered) layer. In the WoW process, as examined by rheological measurements, a semi-dried (highly solidified) state of ink was attained before transferring by utilizing the solvent uptake of a PDMS blanket in offset printing to ensure the structural integrity of the ink layer, and to reduce the inter-contamination of adjoining layers. Loss-on-drying tests and resistivity measurements indicated that molecular penetration at the boundary of adjoining layers with a length of c.a. 70 nm occurred in the WoW process; however, with thicker electrodes, we successfully fabricated a WoW-processed TFT whose performance was comparable with a TFT formed by a conventional printing process.

035021

and

A novel two-port thermal-flux method has been proposed and demonstrated for degassing and charging two-phase microfluidic thermal transport systems with a degassed working fluid. In microscale heat pipes and loop heat pipes (mLHPs), small device volumes and large capillary forces associated with smaller feature sizes render conventional vacuum pump-based degassing methods quite impractical. Instead, we employ a thermally generated pressure differential to purge non-condensable gases from these devices before charging them with a degassed working fluid in a two-step process. Based on the results of preliminary experiments studying the effectiveness and reliability of three different high temperature-compatible device packaging approaches, an optimized compression packaging technique was developed to degas and charge a mLHP device using the thermal-flux method. An induction heating-based noninvasive hermetic sealing approach for permanently sealing the degassed and charged mLHP devices has also been proposed. To demonstrate the efficacy of this approach, induction heating experiments were performed to noninvasively seal 1 mm square silicon fill-hole samples with donut-shaped solder preforms. The results show that the minimum hole sealing induction heating time is heat flux limited and can be estimated using a lumped capacitance thermal model. However, further continued heating of the solder uncovers the hole due to surface tension-induced contact line dynamics of the molten solder. It was found that an optimum mass of the solder preform is required to ensure a wide enough induction-heating time window for successful sealing of a fill-hole.

035022

and

This paper describes the development of a micro-electro-mechanical-systems (MEMS) repulsive actuator capable of producing an out-of-plane force in the tens of micro Newtons range. There are many commercial applications that require such actuators such as adaptive optics, phone cameras and micro-structure assembly. Thin MEMS actuators are needed to exert a large out-of-plane force to move payloads with a mass ranging from 1 to 5 mg. A MEMS repulsive actuator that generates a large force was developed. A commercial manufacturing process, PolyMUMPs, was used to fabricate prototypes. The prototype achieved an out-of-plane displacement of 15 µm and a 0.2° angular rotation. The rise and fall times were measured as 14.5 ms and 3625 ms (3.6 s), respectively. The estimated out-of-plane force is 40 µN.

Technical Note

037001
The following article is Open access

, , , and

A novel mechanical model was proposed to calculate the contact resistance at tip and capping layer interface for scanning probe phase-change memory applications. The resulting I–V curve calculated from this model that combines Hertzian contact theory with the Schottky diode effect has exhibited a good agreement with the experimental measurements under the same system architecture. The role of contact resistance on the write efficacy of scanning probe phase-change memory was also evaluated by introducing the calculated contact resistance into the previous electrothermal simulations for cases of writing crystalline bits in amorphous starting phase and writing amorphous bits in crystalline starting phase. The consequent written marks and I–V curve show a closer match with the experimental observation compared to the case without including contact resistance.