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Abstract
We studied the effect of annealing on the luminescence of Coumarin 106 (C106) in poly (vinyl alcohol)
films (PVAfilms). The samples and reference polymer filmswere treated at temperatures between 100
°Cand 150 °C (212 F and 302 F) for various times. After cooling and smoothing, the samples and
references weremeasured at room temperature.We observed that the PVApolymer (reference films)
changes its optical properties with annealing at higher temperatures, affecting the baselines in
absorption and the backgrounds in emissionmeasurements. This requires precise background
subtractions and control of the signal-to-noise ratio.Whereas thefluorescence intensity of C106 in
PVAfilmsmodestly decreases with annealing, the phosphorescence depends dramatically and
progressively increases bymany folds. Thefluorescence quantum yields and lifetimes decrease with
the annealing, which suggests an increase in the non-radiative processes in the singlet excited state S1.
The increase in the phosphorescence intensities results from increased intersystem crossing (ISC),
which also decreasesfluorescence.We also studied the effect of annealing on phosphorescence with
the directly excited triplet state of C106. In this case, two processes are affected by annealing, S0→T1

absorption andT1→S0 phosphorescence. The long-wavelength excitation (475 nm) avoids PVA
polymer excitation. The phosphorescence lifetime decreases with annealingwhile the phosphores-
cence intensity increases. These changes suggest that the radiative rate of T1→ S0 increases with
annealing.

1. Introduction

A laser dye Coumarin 106 (C106) (also known as
Coumarin 478)was synthesized and introduced in the
middle of the 1970 s [1]. The molecule of C106 is rigid
and has a fairly planar structure [2]. This smartly
designed dye is reasonably soluble in polar solvents. It
is also solvent sensitive because its electric dipole
increases substantially upon excitation [3], enabling its
use as a chemo-sensor [4]. Recently, we discovered
that C106 shows efficient room temperature phos-
phorescence (RTP) when embedded in poly (vinyl
alcohol) (PVA)films [5].

Moreover, we also reported that the phosphores-
cence of C106 in PVA films can be excited outside the
absorption band with a long-wavelength (475 nm)
light. In this case, the C106 triplet state has been popu-
lated directly through S0 →T1 absorption. RTP has

recently gained interest because of possible applica-
tions in encryption, decryption [6, 7], and counter-
feiting [8]. An efficient RTP has been observed in
metal–organic hybrids [9–11]. RTP of xanthene deri-
vatives crystals has been proposed for imaging [12].
Any practical application of RTP will benefit from
stronger emission signals. The rigidity of the medium
plays an important role in phosphorescence emission.
Therefore, most reports on RTP are on crystals, sol-
gels, and doped polymers. An interesting effect of
increased phosphorescence is reported by co-assem-
bling biphenyl and naphthalene derivatives in low-
density PVA [13].

Efficient, practical methods of enhancing the
properties of the medium and RTP signal are freeze–
thaw and/or annealing [14]. Annealing (thermal treat-
ment) has been applied to PVA doped with silver
nanoparticles [15] and carbon films and dots [16, 17].
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Recently several reports appeared on annealing PVA
polymers doped with carbon nanodots [18–20]. The
impact of the fabrication process on the RTP of small-
molecule-doped polymers has been described [19]. All
these reports suggest using temperatures below the
PVA polymer melting point (about 200 °C). In addi-
tion to efficient water removal from the PVA film fol-
lowing annealing, structural changes to the polymer
structure can appear [21, 22, 37], changing polymer
properties. For example, an annealing treatment of
135 °C increases the PVA fiber stiffness by 80% [22].
Intrigued, we decided to check the effect of annealing
on C106-doped PVA luminescence (absorption,
fluorescence, and phosphorescence). We will apply
annealing temperatures up to 150 °C (for different
amounts of time) for C106 doped PVA films and to the
control samples-PVA films only with comparable
thickness.

2.Materials andmethods

The Coumarin 106 used is laser grade (purity  98%)
and is from Kodak (now Estman-Kodak). Before use,
C106 was recrystallized from a methanol-water solu-
tion. Poly (vinyl alcohol) [MW 130,000, 98% hydro-
lyzed] was obtained from Millipore Sigma [Sigma
Aldrich].

2.1. Preparation of poly(vinyl alcohol)films
PVA films are prepared from a 10% (w/w) solution of
PVA and deionized water. The PVA bulk solution was
made in a 500 ml Erlenmeyer flask and was heated/
steered at 95 °C until the solution became clear and
had a honey-like consistency. The stock solutions of
C106weremade in 20 ml of 10% (w/w) PVA solution,
mixed, and then transferred to an 8.5 cm diameter
Petri dish. Blank PVAfilmsweremade for background
signal corrections. Drying the C106 films in the Petri
dishes took about a week. After drying, the films were
removed from the Petri dishes, and their thicknesses
weremeasured with a caliper. The average thickness of
each film was 0.02 cm. The estimated concentrations
of C106 in PVAfilmswere between 0.5–2 mM.

2.2. Annealing
Annealing of films has been done with a gravity
convection lab oven. The temperature was stabilized
with  2 °C accuracy. The samples were loaded into
the preheated oven.

2.3. Absorptionmeasurements
The Varian Cary 60 UV–vis Spectrophotometer (Agi-
lent Technologies, Inc) was used to measure the
absorption spectra at room temperature. Each film
was measured multiple times, and the absorbances
were averaged. Blank PVA was used for baseline
corrections unless specified otherwise.

2.4. Fluorescencemeasurements
Fluorescence measurements were conducted on a
Varian Cary Eclipse spectrofluorometer (Agilent
Technologies, Inc). Front-face fluorescence measure-
ments were made with a custom-made attachment
with a UV grid polarizer on the excitation and a plastic
sheet polarizer on the emission [23]. Fluorescence
lifetimes were measured with FluoTime200 (Pico-
quant, GmbH), and the data were analyzed with the
FluoFit program (Picoquant, GmbH,Version 4.4).

2.5. Phosphorescencemeasurements
The Varian Cary Eclipse instrument has a mode
allowing for time-gated phosphorescence detection.
Time-gatingmode eliminates the short-lived emission
component (Raman scattering, scattering, and fluor-
escence backgrounds). Unless specified in the figures,
the parameters used in this mode were: Total Decay
Time: 0.5 s, Number of flashes: 5, Delay Time: 0.2 ms,
and Gate Time: 5 ms. More details can be found in the
Phosphorescence Measurement section of [5]. Phos-
phorescence excitation and emission anisotropies
were calculated from measured polarized intensity
components IVV and IVH as:

=
-
+

( )r
I I G

I I G2
1VV VH

VV VH

*
*

IVV and IVH are phosphorescence intensities mea-
sured with a vertically polarized excitation and
observed through vertically or horizontally oriented
polarizers, respectively. G (G-Factor) has been used to
correct the uneven transmissions of IVV and IVH
through the detection path. The G-factor was mea-
sured for the front-face configuration described
in [23].

2.6. Phosphorescence lifetimemeasurements
For lifetime measurements, we used a Varian Cary
Eclipse spectrofluorometer (Agilent Technologies,
Inc.) which is equipped with a lifetime function for a
sub-second time scale. The gating parameters were the
same as for phosphorescence spectra measurements
and focused on specific excitation and emission
wavelengths, as depicted in the figures. The collected
time-dependent intensities were fitted to a multi-
exponentialmodel:

å a= t( ) ( )/I t Io e 2
i

i
t i

Where the ai term represents the amplitude for the
ith intensity decay component at a time to and ti

represents the lifetime of that component.
For calculating intensity (<t>int) and amplitude

(<t>amp) average decays, the following formulas
were used:

åt t< > = ( )f 3i iint

åt a t< > = ( )4i iamp

2

Methods Appl. Fluoresc. 12 (2024) 015005 EAlexander et al



a t
a t

=
å

( )f 5i
i i

i i

Equations (1)–(5) describe multi-exponential
approximation of the emission intensity decay with
the analysis based on least-square method, see more
details in [23–25]:

The applicability of appropriate average values has
been described in [26].

3. Results and discussion

We targeted a 0.6 absorbance of C106 in PVA with a
film thickness of about 200 microns, knowing that
volume decreases about 12–13 fold for 10% PVA
(130,000 MW) upon drying [23]. Solutions in Petri
dishes were dried at room temperature on a leveled
surface. After the PVA samples were completely dry,
films were pulled from the dishes and cut into strips.
The thicknesses of the film strips weremeasuredwith a

caliper. The film strips were arranged in pairs of
sample-reference (PVA filmed doped with C106 and
PVAonlyfilm)with the same thicknesses.

First, we applied the annealing temperature of 150
°C for 15 min to C106 doped PVA film and to the con-
trol sample-PVA film with similar thickness. After the
annealed samples were cooled down, the measure-
ments were done at room temperature. Keep in mind
that all temperatures used on annealing in our experi-
ments are above the PVA film glass transition temper-
ature of 85 °C, [27].

3.1. Effect of annealing onC106 inPVAfilm
absorption
Absorbances of C106 in PVA Films (not annealed and
annealed at 150 °C for 15 min) are shown in figure 1.
Clearly, the absorbance of the annealed sample
increased at shorter wavelengths in UV. However, the
increase is clearly a result of changed PVA absorption.

Figure 1.Top: absorptions of C106 in PVAfilms for not annealed (black) and annealed at 150 °C for 15 min. (red) samples The
absorptions of PVA reference films are shown as dashed lines. Thesemeasurements were donewith an air as a baseline. Bottom:
Absorptions of C106 in PVAfilms after subtraction of PVAbackground.

3
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PVA absorption can seriously affect the samples
absorbing light in the UV spectral region. Therefore,
we decided to look more into PVA absorbance chan-
ges upon annealing.

3.2. Effect of annealing onPVAfilms
Absorbances of PVA annealed at different tempera-
tures for 15 min are shown in figure 2. Interestingly,
annealing at 110 °C practically does not change the
PVA absorption. Another series of film strips were
annealed at 150 °C for different periods, up to one
hour, see figure 3.

Evidently, anyone using UV excitation must con-
sider the PVA absorption for both inner-filter effects
(absorption of the excitation light and absorption of
fluorescence emission). Fortunately, the long

wavelength absorption of C106 is not strongly over-
lapped with PVA absorption. The differences in the
PVA Annealed films versus the not annealed films can
be found in Supplementary Materials (SM),
figure SM1.

3.3. Effect of annealing onC106 inPVAfilms
fluorescence spectra
While the absorption of C106 in PVA films does not
depend significantly on annealing, fluorescence emis-
sion decreases for annealed samples substantially, see
figure 4. Annealing at 150 °C for 30 min results in an
almost 50% decrease in fluorescence intensity. Pro-
gressive fluorescence intensity changes at different
temperatures are shown infigure SM2.

Figure 2.Effect of annealing on the absorption of PVAfilms. The PVAfilm strips were heated for 15 min at different temperatures.
The thicknesses of thefilmswere 0.22 mm.

Figure 3.Effect of annealing onPVAfilms. The strips of PVAfilmswere heated at 150 °C for different time periods. The thicknesses of
the filmswere 0.20 mm.

4
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Figure 4.Effect of annealing onfluorescence of C106 in PVAfilms.

Figure 5. Fluorescence intensity decays of C106 in PVAfilms annealed at 150 °C for 15 min. (left) and 30 min. (right).

Figure 6.Top: Polarized components of C106 in PVAfilmsfluorescence emission of not annealed (left) and annealed sample at
150 °C for 15 min. Bottom: Fluorescence anisotropy of C106 in PVAfilms: not annealed (black) and annealed at 150 °C for 15 min.

5
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3.4. Effect of annealingC106 in PVAfilms
fluorescence lifetimes
The not annealed C106 in PVA film has a fluorescence
lifetime of about 5 ns [5]. Lifetimes of C106 in PVA
samples progressively decrease with the increase in
annealing time, see figure 5. Both the fluorescence
intensity and lifetime measurements suggest that
deactivation processes increase in annealed samples
(changes in absorptions are insignificant).

3.5. Effect of annealingC106 in PVAfluorescence
anisotropy
We wondered if annealing affects fluorescence aniso-
tropy. The measurements of fluorescence emission
anisotropies for not annealed and annealed samples
are shown in figure 6. Evidently, anisotropies are not
affected by the annealing process. However, it must be

noted that PVA strips cannot be placed between rigid
surfaces (like glass slides) and squeezed in annealing,
and the cooling cannot be rapid. Not carefully
performing the annealing process may result in PVA
residual crystallization, and these areas become opti-
cally active (rotate the plane of light polarization); see
figure SM3 in SupplementaryMaterials.

3.6. Effect of annealing onC106 inPVA
phosphorescence
Based on other annealing reports described in the
Introduction section, we were optimistic that C106
would show an improved RTP. Indeed, the phosphor-
escence intensity of annealed C106 in PVA film shows
a significant increase, see figure 7. The measurement
was done with 405 nm excitation within the absorp-
tion band. The 405 nm excitation results in a residual

Figure 7.Effect of annealing on the phosphorescence of C106 in PVAfilmswith the excitation at 405 nm.

Figure 8.Effect of annealing on the phosphorescence of C106 in PVAfilmswith direct triplet excitation at 475 nm.

6
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delayed fluorescence (DF) already observed in [5].
Contrary to phosphorescence, theDF does not depend
strongly on annealing. The phosphorescence back-
grounds from both annealed, and non-annealed
samples (dashed lines) are negligible.

For a few years, we studied the RTP of different
organic molecules embedded in PVA polymer excited
directly to triplet states at longer wavelengths [5,
28–34]. The long-wavelength excitation (475 nm) of
C106 in PVA samples is shown in figure 8. Compared
to 405 nm excitation, the effect is even stronger. Such
long-wavelength excitation of RTP results not only in
the lower background but also in higher anisotropy,
see figure 9. The excitation to S1 state results in very
low/negative phosphorescence anisotropy because T1

state (populated by the inter-system crossing process)

is orthogonal to the singlet. In the case of direct triplet
state excitation, the phosphorescence anisotropy is
high, just like forfluorescence.

All of the measurements mentioned above were
done with the same pair of not annealed/annealed
samples and their references.

The strong effect of annealing increasing the phos-
phorescence of the samples encouraged us to study
this as a function of different annealing times. The
effect exceeded our expectations; see figures 10 and 11.
Many fold enhancements have been observed for
405 nmand 475 nmexcitations.

At 405 nm excitation, the phosphorescence spec-
tra have been corrected for inner filter effects due to
PVA absorptions as described in [23, 35, 36].

Figure 9.Phosphorescence excitation anisotropy of C106 in PVA film annealed at 150 °C for 15 min.

Figure 10.Effect of annealing on the phosphorescence of C106 in PVAfilms. The strips of PVAfilms dopedwithC106were heated at
different times at 150 °C.The excitationwas at 405 nm,within the C106 absorption band.

7
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No corrections for inner filter effects were needed
with 475 nm excitation; see PVA absorptions in
figure 3.

3.7. Effect of annealing onC106 inPVAdiscussion
What is the reason for the enhancement upon anneal-
ing? First, the remaining water molecules are removed

Figure 11.Effect of annealing on the phosphorescence of C106 in PVAfilms. The strips of PVAfilms dopedwithC106were heated at
different times at 150 °C.The excitationwas at 475 nm.

Figure 12. Fluorescence and phosphorescence excitation spectra of C106 in PVAfilm annealed for 15 min at 150 °C.

Figure 13.Ageneralized Jablonski diagram that includes possible singlet–triplet absorption (red arrow). This can be used to visualize
the construct of C106 singlet and triplet states.
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from the polymer. Second, reaching glass temperature,
polymer molecules can more tightly surround the
doped molecules. This will result in stronger interac-
tions between the doped molecule and the polymer
chain, which may activate spin–orbit perturbations.
This will also explain that some molecules show a
stronger phosphorescence enhancement when their
shapesfit better to the polymer chain arrangement.

The phosphorescence excitation spectrum of
annealed C106 in PVA film differs from the fluores-
cence excitation spectrum, see figure 12. Both spectra
measured in fluorescence (blue) and phosphorescence
(red) modes were observed at 560 nm with the same
slits on excitation and observation paths. Above
450 nm, fluorescence (singlet state)was not excited. At
longer wavelengths, the triplet state T1 of C106 has
been directly excited. We believe the transition S0 →
T1 is missed in the commonly accepted Jablonski dia-
gram, see figure 13, [23–25]. Furthermore, we calcu-
lated the difference between S1 and T1 to about
3500 cm−1. The calculationwas based on the positions
of emissions maxima, 450 nm for fluorescence and
535 nm for phosphorescence.

The average phosphorescence lifetime of C106 in
PVAfilm at 475 nm excitation is about 370 ms, slightly
longer thanwithUV excitation (360 ms) [5]. However,
with annealing, it is shorter,132 ± 5 ms, see figure 14.
At the same time, the phosphorescence intensity
increases proportionally, see figure 8. A simultaneous
increase in intensity and decrease in a lifetime has been
observed in metal-enhanced fluorescence [25] and
explained by a modification of the radiative decay rate
(called radiative decay engineering). In the case of
annealing, we believe that the radiative rate increases
also due to stronger spin–orbit interactions. The

decrease in the non-radiative rate would result in an
increased lifetime.

Finally, how to use annealing with UV excitations
where absorption of PVA might be high? Looking at
figure 2, the annealing at 110 °C practically does not
change PVA absorption. With fresh samples, we repe-
ated the experiments (absorption, fluorescence, and
phosphorescence) using annealing at 110 °C for
30 min, see Supplementary Materials, Figures SM4-
SM8. About 100% enhancement in phosphorescence
intensity can be achieved without altering PVA
absorption.

4. Conclusions

The measurements presented above clearly show the
possibility to enhance by annealing the phosphores-
cence intensities of C106 in PVA polymer by several
fold, without altering their spectral or polarization
properties. We believe that this may significantly
influence the possible RTP applications of this and
other dyes. Can this effect universally apply to all
organic dyes? Although it is too early to answer this
question, and more experimental data are needed, we
observed some enhancement upon annealing for
several other dyes like Coumarin120 or DAPI. How-
ever, we did not observe such enhancement for
Coumarin 540 or Benzophenones.

Regardless, the possibility of achieving effective
RTP with long-wavelength excitation simplifies these
measurements and provides potential improvements.
More powerful excitations can be obtained from blue/
green lasers, and detector efficiency is significantly
increase in the blue/green range. And the use of longer
wavelength excitations results in lower background

Figure 14.Phosphorescence intensity decay of C106 in PVAfilm annealed for 15 min at 150 °C. The decay can be satisfactorilyfitted
to a bi-exponentialmodel with the parameters:α1= 229± 15, τ1= 33± 3 ms, :α2= 17± 2 and τ2= 282± 8 ms, and a standard
deviation of 5.0.
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and unwanted scattering, allowing for more signal to
be detected.
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