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Abstract
PIFEwasfirst used as an acronym for protein-induced fluorescence enhancement, which refers to the
increase influorescence observed upon the interaction of a fluorophore, such as a cyanine, with a
protein. Thisfluorescence enhancement is due to changes in the rate of cis/trans photoisomerisation.
It is clear now that thismechanism is generally applicable to interactions with any biomolecule. In this
review, we propose that PIFE is thereby renamed according to its fundamental working principle as
photoisomerisation-related fluorescence enhancement, keeping the PIFE acronym intact.We discuss
the photochemistry of cyanine fluorophores, themechanismof PIFE, its advantages and limitations,
and recent approaches to turning PIFE into a quantitative assay.We provide an overview of its current
applications to different biomolecules and discuss potential future uses, including the study of
protein-protein interactions, protein-ligand interactions and conformational changes in
biomolecules.

1. Photoisomerisation as amodulator of
fluorescence

Fluorescence spectroscopy is a powerful method for
studying biological phenomena in vitro and in vivo.
Fluorescent dyes are sensitive reporters of their
immediate surroundings at different length- and time

scales. For every need, there is likely a fluorescent
reporter for the job [1–3]. Many reporters and assays
are based on fluorescence quenching, which can be
either static by the formation of non-fluorescent
complexes or dynamic by depopulation of the excited
state. Quenching mechanisms include changes due to
electron transfer, dye protonation, or excited-state
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photoisomerisation. The resulting changes in fluores-
cence intensity, lifetime, spectrum, or polarisation
allowmonitoring of the physicochemical condition in
the vicinity of the reporter, including viscosity, pH,
dye interactions, or the presence of ions and chemical
groups. Combining two or more dyes, e.g., via Förster
resonance energy transfer (FRET), provides additional
capabilities to study interactions between the dye and
quencher, either within a biomolecule of interest or
between two biomolecules.

This review focuses on the principles and applica-
tions of spectroscopic and biophysical assays based on
fluorescence modulation via photoisomerisation.
These assays require only one fluorophore (as opposed
to FRET) but can still report on a wide range of inter-
actions between a dye and a biomacromolecule. As we
will show, these assays can be utilised in several ways to
provide structure- and species-specific information. A
major inspiration for many recent developments was
the pioneering work by Kozlov and Lohman [4] in
2002, in which the interactions of the E. coli single-
strand binding protein (SSB) with fluorescein- and
Cy3-labelled single-stranded DNA (ssDNA) were
investigated using stopped-flow kinetics. In 2007, the
Xie lab [5], and in 2009, the Ha lab [6] introduced the
first single-molecule assays in which the same princi-
ple was used to modulate fluorescence intensities by
the binding/association of DNA-binding proteins in
the vicinity of a cyanine fluorophore conjugated to
DNA. The term protein-induced fluorescence enhance-
ment (PIFE) was coined subsequently by Myong et al.
[6], and PIFE is now used for various assays to study
biomolecular interactions and structures, as also sum-
marised in previous reviews [7–9]. This review will
start with a historical perspective of PIFE, followed by
a discussion of the latest developments and possible
future avenues with a focus on single-molecule appli-
cations. Finally, we propose changing the original
PIFE acronym to photoisomerisation-related fluores-
cence enhancement, which encompasses all related
methods.

2. PIFE: fromold to new

2.1. Photophysical background to PIFE
PIFE involves changes in the fluorescence quantum
yield (QY), brightness and lifetime that are caused by
distinct dye microenvironments. For cyanine fluoro-
phores, which are typically used in PIFE assays, these
changes are due to competition between excited-state
deactivation pathways that include radiative and non-
radiative transitions to the electronic ground state in
conjunction with a cis-trans isomerisation of the
molecule. As a representative example, we consider a
dye such as sulfo-Cy3 (sCy3) with a fluorescing all-
trans isomer (0°; figure 1(A), trans) and non-fluores-
cent mono-cis isomer (180o; figure 1(A)), which differ
by rotation around the polymethine chain, denoted by

θ (figure 1(A)). The fluorescence QY values of the cis
isomers of related tri- and pentamethine cyanineswere
estimated to be �0.004 [10] and �0.01 [11], respec-
tively. These values are significantly lower than those
reported for more rigid versions of Cy3 (Cy3B,
QY = 0.85 [12, 13]) and Cy5 (Cy5B, QY = 0.69 [14]),
which are locked in the trans conformation. The
mono-cis ground-state can form as a result of photo-
isomerisation but thermally converts back into the
more stable trans ground-state with rate kgs
(figure 1(B)) on the order of microseconds, and
sometimes even milliseconds [15]. The observed
emission of the dye (e.g., in a biophysical assay) is a
result of the following processes: continuous excita-
tion of the ground-state trans isomer at the appro-
priate excitation wavelength populates the excited
state *ST of the more stable trans isomer with rate kex,T.
The latter can either decay to the trans ground-state by
internal conversion and fluorescence with the rate kT,
or photoisomerise via a 90°-twisted state (90o;
figure 1(A)/B, twisted), resulting in the formation of
both the brighter trans and dimmer cis ground-state
isomers. The branching ratio between cis (at rate
k90→C) or trans (at rate k90→T) isomers is governed by
the position of the excited twisted stateminimal energy
and its maximal energy point at ground-state
(figure 1(B)). Importantly, any de-excitation pathway
from out-of-plane excited states, as well as the direct
deactivation of the excited-state cis isomer *SC via
internal conversion with rate kC, are always fully non-
radiative [15, 16] (figure 1(B)). For the dyes Cy3 and
Cy5, it is known that the ground-state cis isomer can
be directly excited (kex,C) with red-shifted excitation
relative to that of the trans isomer [15, 17].

Overall, the observed brightness or fluorescence
intensity is governed by the relative populations of
‘brighter’ trans and ‘dimmer’ cis isomer species in the
photodynamic equilibrium and the intrinsic non-
radiative and radiative decay pathways in relation to
photoisomerisation. Typically, the fluorescence life-
times of dyes such as Cy3 are in the range of hundreds
of picoseconds due to efficient photoisomerisation.
Importantly, local viscosity and temperature impact
this process and thus also excited-state lifetimes
[20–22] since the rate kT*→90 is related to crossing an
excited-state energy barrier (figure 1(B)). Quantitative
insights into these kinetics have been obtained by
fluorescence correlation spectroscopy (FCS), provid-
ing estimates of isomerisation rates of Cy5 as a func-
tion of the irradiance, viscosity of the medium and
temperature, and the effect of the conjugation to bio-
molecules [23].

The PIFE effect originates from a change in the
local environment of the dye in terms of viscosity or
specific interactions, which - to a first approximation -
reduces the photoisomerisation rate kT*→90

(figure 1(B)). This reduction increases the population
of the excited trans isomer and decreases that of the
excited twisted state and cis isomer, all of which
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increase the observed brightness and excited-state life-
time. Importantly, viscosity can vary due to solvents or
co-solvents (e.g., high concentrations of viscogens and
osmolytes) but also increase due to steric obstruction
when the dye is conjugated to a biopolymer or its local
environment changes due to biomolecular interac-
tions. Such changes in steric obstruction (or micro-
viscosity) of dyes are dubbed PIFE effects and have
been used extensively to study biomolecular binding
aswell as local structural dynamics (figure 1(C)).

2.2.Origins of dyemolecules for PIFE
The idea of exploiting the photophysical properties of
Cy3 and related cyanine dyes to investigate nucleic
acid-protein interactions has a long history. Cyanine
dyes are among the oldest and most investigated
synthetic dyes. Studies in solution date back to the
1950s [24]. The formation of transient isomers from
the singlet excited-state and their subsequent recon-
version to the stable form was recognised already in
1966 [25]. As shown in figure 1, efficient internal
conversion via photoisomerisation from the singlet
excited-state is responsible for the low fluorescence
QY and short fluorescence lifetime of cyanine dyes
such as Cy3 in solution [26–28]. The effect of solvent
viscosity on these processes was thoroughly investi-
gated in the 1980s and early 1990s using transient
absorption and picosecond time-resolved spectrosc-
opy [20, 27, 29–32]. These studies established a
relationship between solvent viscosity and the rate of
photoisomerisation, which ultimately governs the
excited-state lifetime. Back then, cyanine dyes were
primarily used as laser dyes, photoinitiators, and
spectral sensitisers for silver halide photography and

photodynamic therapy. Biological applications pri-
marily used lipid-linked cyanines such asDiI (i.e., 1,1’-
Dioctadecyl-3,3,3’,3’-Tetramethylindocarbocyanine)
or DiD (i.e., 1,1’-Dioctadecyl-3,3,3’,3’-Tetramethylin-
dodicarbo-cyanine) asmembrane probes.

AlanWaggoner, Professor of Biological Sciences at
Carnegie Mellon University, recognised the potential
of these fluorescent compounds as probes to visualise
biochemical processes and cellular functions. His
team designed new cyanine dyes with sulfonates cou-
pled directly to the indolenine rings to prevent aggre-
gation and improve water solubility (figure 2). The
series is now known as ‘Cy-dyes’ and was synthesised
and popularised as NHS ester derivatives for labelling
macromolecules [33]. Importantly, many more struc-
tural variants of the Cy-dyes emerged over the years,
where better water solubility was achieved by varying
the number of sulfonates on the indolenine rings
(figure 2). As highlighted earlier [7], the Cy-dyes lack a
consistent nomenclature, and we suggest here indicat-
ing the degree of sulfonation for Cy-dyes in the name
used (figure 2) [34]: Cy for the unsulfonated version
and sulfo-Cy (sCy) for the double-sulfonated version,
to clearly distinguish them from other members of the
structural family, e.g., from the AF dyes and the Alexa
Fluor series, and to relate a uniquemolecular structure
to the name used. As a side note, we refer the reader to
a recent work showing that dyes from the commercial
AF series and from the Alexa Fluor series turn out to
have different chemical structures as well as different
photophysical features [34], hence the distinction
between the two names (see examples infigure 2).

The demand for cyanine-labelled oligonucleotides
soared with the rise of single-cell flow cytometry,

Figure 1. PIFE concepts. (A)Molecular structure of the cyanine dye sCy3 as trans (top) and cis isomer (bottom). Isomerisation along
the polymethine chainmodulates thefluorescence of sCy3. (B)Energy diagramof sCy3 as a function of the rotation coordinate θ in the
trans (0o) and cis (180o) state. Upon excitation into the excited trans state ( *ST), deactivation occurs upon internal conversion and
fluorescence (summarized by the decay rate kT) or by isomerisation (kT*→90) into the twisted state (90

o). The excited cis state ( *SC )
decays via internal conversion to the cis ground-state with a decay rate (kC) or by isomerisation (kC*→90). From the excited-state
minimum in the twisted state, sCy3 forms the trans and cis ground-state with rates k90→T or k90→C, respectively. In the ground-state,
the reconversion from cis to trans isomer is again thermally drivenwith a rate kgs. Adapted fromLerner, Ploetz et al. [18] under the
terms of theCreative CommonsCC-BY License 4.0. (C)Using smPIFE at the single-molecule level allows, for example,monitoring
the position of aCy3-labelled dsDNA construct outside (black) and inside (red) aKlenow fragment via time-resolved fluorescence
(top) and anisotropy (bottom). The transition of the primer to the exonuclease site pulls theCy3-labelled fragment from a solvent-
exposed to protein-surrounded position, leading to a change in environment detected by PIFE. License: C)Adaptedwith permission
from {Stennett EMS, CiubaMA, Lin S and LevitusM2015Demystifying PIFE: The Photophysics Behind the Protein-Induced
Fluorescence Enhancement Phenomenon inCy3The Journal of Physical Chemistry Letters 6 1819–23} [19]. Copyright {2015}
AmericanChemical Society.
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quantitative PCR, the development of single-molecule
detection and imaging techniques, and many other
important biotechnological applications (e.g., see
[35–39]). Most of these applications benefit from
bright labels with fluorescence properties that are
insensitive to environmental changes, and in this con-
text, the sensitivity of Cy3 to environmental condi-
tions was initially perceived as a nuisance [12].
However, researchers quickly realised how to utilise
this sensitivity to probemolecular interactions.

2.3. First applications of PIFE to protein-nucleic
acid interactions
The focus of this review is on the photophysical basis
and applications of photoisomerisation in various
biochemical and biophysical assays. However, it is
worth noting that this is certainly not the only
approach for observing fluorescence modulation.
Generally, the interactions of proteins with nucleic
acids can be examined by labelling one of them (e.g.,
the nucleic acid) with an extrinsic dye that exhibits
changes in fluorescence intensity, lifetime or aniso-
tropy in response to changes in its immediate micro-
environment [40]. This approach has been used
extensively to studymany interacting systems. In some
cases, fluorescence enhancement occurs, while in
other cases,fluorescence quenching is observed. Either
effect can be used for monitoring interacting systems
via fluorescence. One of the first ensemble-level
studies using this approach examined the interaction
of fluorescein-labelled tRNA with the elongation
factor Tu, which was accompanied by fluorescence

enhancement of fluorescein [41]. The binding of
human β-DNA polymerase to a fluorescein-labelled
ssDNA also exhibits fluorescence enhancement of
fluorescein [42].

The first report of fluorescence enhancement
involving photoisomerisation by Kozlov and Lohman
[4], even before the PIFE acronym was coined, used
fluorescein- and Cy3-labelled nucleic acids. This work
reported a FRET-based measurement, which studied
the interactions of the E. coli single-strand binding
(SSB) protein with a Cy3-labelled ssDNA, (dT)65,
labelling its 3’-end with Cy3 and its 5’-end with Cy5
(figure 3(A)). This length of ssDNA forms a 1:1 com-
plex with the SSB tetramer, in which the DNA wraps
around the tetramer such that the two ends of the
ssDNA are brought in close proximity. Thus, an
increase in FRET is expected upon SSB binding to the
Cy3/Cy5 labelled (dT)65. In fact, although the expec-
ted Cy5 fluorescence increase was observed, and a
corresponding decrease in Cy3 fluorescence was
expected, an unexpected Cy3 fluorescence increase
was observed. Indeed, control experiments with
(dT)65 labelled solely with Cy3 also showed fluores-
cence enhancement. This increase was attributed to a
direct interaction between Cy3 and the SSB protein
that resulted in an increase in the Cy3 fluores-
cenceQY.

This phenomenon was also observed during the
interaction of the E. coliUvrD protein with a Cy3-label-
led ssDNA. E. coliUvrD, as amonomer, is a rapid ATP-
dependent translocase that moves along ssDNA in a 3’-
to-5’direction [43]. Anoligoodeoxythymidylate ssDNA

Figure 2.Confirmed chemical structures of cyanine dyes (Cy-, Alexa Fluor-, and theAF-series) frequently used for biological
applications. Please note that the AF-dye homologs of Cy5 are available in two distinct versions called AFD647 (n= 1) andAF647
(n= 2). Formerly unpublished structures were confirmed byNMR andMS/MS [34]. To highlight structural differences compared to
the parental cyanine fluorophore, we coloured linkers for labelling, e.g., viamaleimide groups in blue, sulfo-groups in purple and
sulfonated alkyl groups in orange. Please note that linkers for other types of dyesmight differ in length.
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molecule, (dT)L, of length L, was labelled with Cy3 at
the 5’-end and was used for investigating the mech-
anism of UvrD monomer translocation (figure 3(B)).
UvrD will initially bind non-specifically to the
(dT)L-Cy3molecules. Upon addition of ATP, the UvrD
translocase will move along ssDNA (3’-to-5’) until it
reaches the Cy3 label at the 5’-end, resulting in an
enhancement of the Cy3 fluorescence intensity. Hence,
one can measure the average time required for the
enzyme to reach the 5’-end of the ssDNA. The kinetics
of translocation can be examined in ensemble-level
stopped-flow kinetic experiments using a series of
(dT)L-Cy3 molecules varying in length [43, 44]. This
approach has since been used to examine ssDNA trans-
location of a number of translocases and helicases,
including E. coli Rep [45], E. coli RecBC [46, 47], E. coli
RecBCD [48], B. stearothermophilus PcrA [49], yeast
Srs2 [50] and yeast Pif1 [51]. Lucius et al [52] observed
an interesting PIFE effect while monitoring DNA
unwinding by RecBCD following a Cy3/Cy5 FRET sig-
nal. Just before the unwinding reaction was complete,
resulting in DNA strand dissociation, a transient

increase in the Cy5 fluorescence signal was observed.
This is due to a Cy3 PIFE effect when RecBCD reaches
the Cy3 dye that is then transferred via FRET to the Cy5
dye, resulting in a transient Cy5 fluorescence increase
before the expected Cy5 fluorescence decreases upon
DNA strand separation. Other dyes, such as fluorescein
and rhodamine red, can also be used in analogous
experiments, although these dyes undergo fluorescence
quenching upon interactingwithUvrD [43].

In 2007, Luo et al were the first to report the PIFE-
based measurements and analysis of protein-depen-
dent Cy3 intensity fluctuations at the single-molecule
level [5]. This work is also significant because it was the
first to provide a mechanistic explanation for the
observed protein-dependent changes in Cy3’s fluores-
cence intensity. The authors referred to the strong sol-
vent viscosity dependence of the fluorescence QY of
the dye and represented the potential energy surface
commonly used to interpret solvent effects on photo-
isomerisation rates.

The term PIFE was coined in 2009 as an acronym
for ‘protein-induced fluorescence enhancement’ by Sua

Figure 3.Pioneeringwork using PIFE for probing the interaction between proteins and nucleic acids. (A)The interaction between the
tetrameric single-strand binding protein (SSB) and ssDNA leads to a 1:1 complex. Since the ssDNA is labelledwithCy5 andCy3 at the
5’- and 3’-ends, respectively, complex formation is observed by a shortening of the inter-dye distance, leading to FRETbetween both
dyes and an increase in brightness in Cy3 due to PIFE. (B)Translocation of theUvrDprotein along ssDNA from the 3’- to 5’-end can
be probed using stopped-flow experiments via the enhancement of the Cy3fluorescence intensity once it reaches the 5’-end. (C)
Binding and translocation of the RIGh-I protein to single-strandedRNAwas probed at the single-molecule level by TIRFmicroscopy
and observed viafluorescence fluctuations in anATP-dependentmanner. Licenses: (A)Adaptedwith permission from {Kozlov AG
and LohmanTM2002 Stopped-Flow Studies of theKinetics of Single-StrandedDNABinding andWrapping around the Escherichia
coli SSBTetramer Biochemistry 41 6032–44} [4]. Copyright {2002}AmericanChemical Society; (C)Adaptedwith permission from
Reference [6].
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Myong, Taekjip Ha, and colleagues [6], reporting a
single-molecule study of RIGh-I binding and its trans-
location on double-stranded RNA (dsRNA). In this
study, the authors used a dsRNA substrate, terminally
labelled with DY547 (a dye closely related to Cy3), and
observed fluctuations in the fluorescence intensity of
the cyanine label that were associated with the repeti-
tive binding and translocation of the protein on the
dsRNA (figure 3(C)). It was suggested that Cy3-based
PIFE was a distance-dependent through-space
phenomenon that could monitor short-distance
changes (0–3 nm) [9, 53]. However, it became clear
that Cy3 fluorescence enhancement requires a direct

interaction with the protein, such as that introduced
by a steric obstruction, and it is not a through-space
distance-dependent effect as it is in FRET [54]. Cy3-
based PIFE signals have been used in various studies,
including the measurement of diffusion along ssDNA
of the human single-strand binding protein, hRPA
[55], DNA replication by the bacterial DNA Poly-
merase I Klenow Fragment [56, 57], and the direc-
tional chemomechanical pushing of a protein along
ssDNAby anATP-dependent ssDNA translocase [58].

The photoisomerisation model used to explain
PIFE effects (figure 1(B)) was later confirmed by a
spectroscopic study from the Levitus lab using

Figure 4.Methods inspired by and related to PIFE. (A)Nucleic acid-induced fluorescence enhancement (NAIFE). Interactionswith
nucleic acids lead to fluorescence enhancement of Cy3. (B) Stacking-induced fluorescence increase (SIFI). Stacking of Cy3 in a nick,
gap or overhang ofDNA leads to an increase in fluorescence intensity and lifetime. (C)Unwinding-induced fluorescence
enhancement (UIFE). The unwinding of a dsDNAand bubble formation inside the bacterial RNApolymerase during transcription
initiation can be investigated by labelling the nucleic acidwithCy3. Binding andmelting of theDNA leads to contact betweenCy3 and
the RNAP and to an increase influorescence. Licenses: (A)Reproduced from [75]with permission from the PCCPOwner Societies;
(B)Reproduced from [93] under the terms of a Creative CommonsCC-BY 4.0 license. (C)Reproduced fromMazumder et al, 2021,
eLife [74]with permission, published under theCreative Commons Attribution 4.0 International Public License (CCBY4.0; https://
creativecommons.org/licenses/by/4.0/). Further reproduction of this panel would need permission from the copyright holder.
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complexes of DNA and the DNA polymerase Klenow
fragment [19]. This study demonstrated that the
increase of the fluorescence QY and lifetime of Cy3
occurs in conditions where the dye is sterically con-
strained by the protein, as measured by a decrease in
the rotational correlation time of the dye, and the cor-
relation with a decrease in the efficiency of photo-
isomerisation (figure 1(C)). A negative correlation
between the rotational correlation time of Cy3 and its
fluorescence QY and lifetime was also observed in
experiments with hRPA bound to ssDNA [54]. This
study also established that the magnitude of the PIFE
effect depends on the nature of the interactions
between the protein and the Cy3 fluorophore and var-
ies when different regions of the protein interact with
the dye.

It has also been demonstrated that Cy3 attached to
DNA can undergo quenching, which is termed pro-
tein-induced fluorescence quenching (PIFQ), upon
interaction with a protein, depending on the position-
ing of Cy3 within the DNA [59]. In that case, the
quenching can alternatively be considered as a reduc-
tion in enhancement since it is due to a change in Cy3
from an already restricted state to a less restricted
environment. Hence, Cy3 can display either phenom-
enon depending on the context of the interaction
[54, 59, 60].

3.Newmethods inspired by and related
to PIFE

Since the early days, it has been clear that the
modulation of photoisomerisation in various dyes can
be used in several informative ways to report on a
variety of different underlying features of a biomole-
cular sample. While in ensemble fluorescence mea-
surements, PIFE was and is still used for probing
biomolecular kinetics [4, 52, 61–66], applying PIFE to
dyes that were bright enough using low background
detectors paved the way for probing such features at
the level of single biomolecules. Since the seminal
works of the Levitus [13, 19, 67–69] and Myong
[9, 53, 70] groups, single-molecule PIFE (smPIFE) has
been used for studying protein-protein and protein-
nucleic acid interactions [18, 56, 71–74] in both an
inter- and intra-molecular fashion, and has been
defined in many context-dependent ways with differ-
ent acronyms (figure 4). We discuss each of these in
detail below.

3.1. Nucleic acid-inducedfluorescence
enhancement (NAIFE)
Cyanines have become some of the most common
fluorescence labels for conjugation to nucleic acids.
One reason is their commercial availability in various
functional forms, allowing chemical coupling to a base
or the phosphate backbone [76–78]. The dyes can be
incorporated into nucleic acids either during or after

solid-phase synthesis or after in vitro transcription.
Another reason for the popularity of cyanines is their
photostability [79]. Interestingly, although free cya-
nine dyes in solution have low fluorescence QYs
(QYCy3 = 0.1) and extremely short fluorescence life-
times (τF � ~0.3 ns for Cy3) and are prone to
photodestruction, they are considered to be photo-
stable in the chemical environment of complex nucleic
acid structures [80]. In the chemical environment of
nucleic acids, Cy dyes experience more steric hin-
drance as compared to diffusing freely in solution,
decreasing their photoisomerisation rate as described
above (figure 1). This effect can cause the fluorescence
QY to increase up to QY = 0.67, as was reported for
Cy3 and its stiffened form, Cy3B (figure 6(A)). Cy3B is
chemically preventing cis-trans photoisomerisation
[12, 81]. Similarly, the fluorescence lifetime increases
by a factor of ~10 to 2.5 ns for Cy3B. The dependence
of Cy dyes on the chemical environment of DNA was
first described by Levitus and colleagues [13, 67],
showing that the modulation of the fluorescence QY
and the lifetime of Cy3 [68] and Cy5 [82] depends on
theDNA sequence.

The interaction of Cy dyes with nucleic acids can
be divided into two categories: (i) charge-driven or
electrostatic interactions and (ii) stacking interactions
or hydrophobic effects.While the former describes the
interaction of the dyes with the highly-charged back-
bone of the nucleic acid sequence, the latter describes
the interaction of the dyes with the ring system of the
nucleobases. Both effects increase the photon yield
and, thus, the molecular brightness of the Cy dyes.
Collectively, this is referred to as nucleic acid-induced
fluorescence enhancement (NAIFE). In the special
case of ribonucleic acid, the effect is called RNA-
induced fluorescence enhancement (RIFE).

(i) In the electrostatic interaction regime, the net
charge difference leads to an attractive Coulomb
force of the dye towards the nucleic acid back-
bone. This is of particular interest in the case of
positively charged fluorophores, like Cy3/Cy5,
which tend to stack on the nucleic acid backbone.
Sulfonated cyanine dyes such as sCy3/sCy5 carry
negatively charged sulfonate groups at neutral
pH, which reduces dye-backbone interactions.
The effect of the sulfonate groups is, in fact,
twofold: on the one hand, the reduced interaction
increases the mobility of the dye on the nucleic
acid. Free dye rotation is a prerequisite for
determining reliable distance information via
FRET. On the other hand, reduced interaction
increases the photoisomerisation probability,
which, in return, leads to a decrease in brightness
and causes the observed NAIFE/RIFE effects.
Therefore, non-sulfonated Cy dyes are preferred
for NAIFE and sulfonated sCy dyes for FRET
experiments.
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(ii) The interaction of the hydrophobic ring systems
of the nucleobases and the Cy dye is characterised
by entropy-driven stacking. This effect has been
described for individual nucleotides, ssDNA and
dsDNA labelled at the 3’-/5’-end [83] and has
been solved structurally by means of NMR [84].
Moreover, stacking can also occur with internally
labelled nucleic acids. In the case of RNA, the
interaction is strongly dependent on secondary
structure elements and tertiary contacts. The
formation of secondary elements is driven by
monovalent metal ions such as K(I) and Na(I),
whereas the formation of tertiary structures often
depends on divalent metal ions such as Mg(II)
and Ca(II) [85]. Themore complex the surround-
ing structure of the dye is and the higher the
binding affinity of divalent metal ions, the more
likely it is that dye-RNA interactions occur, thus
increasing the NAIFE effect (figure 4(A)). This
was first demonstrated for sCy dyes by Steffen et al
in the presence of different RNA structures
(Figures 4(A), 5) [75]. The dependence of NAIFE
on the chemical microenvironment can now be
used to investigate the degree of folding of the
nucleic acid or the interaction probability with
binding partners, such as hybridising DNA frag-
ments [86] or a recently developed DNA-aptamer
sensor [87].

As absolute fluorescence intensity changes are
experimentally susceptible to artifacts (e.g., due to
changes in the fluorescence background or the label-
ling efficiency of the host biomolecule), fluorescence
lifetime-based measurements are an attractive alter-
native to exploit NAIFE (see also section 5.5 on life-
time-based smPIFE). The stronger the interaction
between the dye and RNA or DNA, the lower the pho-
toisomerisation rate and, thus, the longer the fluores-
cence lifetime. This association has been
demonstrated by altering the complexity of the RNA

chemical environment and the divalent metal ion-
dependent binding of the dye to the RNA [75, 88].

Analogous to fluorescence lifetimemeasurements,
polarisation-resolved detection of the fluorescence
signal yields another intensity-independent para-
meter, the dynamic fluorescence anisotropy r(t). Here,
the rotational correlation time, t ,r,local and the residual
anisotropy, ¥r , of the dye are linked to NAIFE
(Figure 5). Both parameters are sensitive to the local
chemical environment of the dye and, hence, can
describe the interaction with its immediate environ-
ment. These measurements can disentangle the inter-
action probability of Cy dyes with the host
environment within the wobbling-in-a-cone model.
The dynamic fluorescence anisotropy, r(t), is divided
into a local rotation of the dye within a cone [75, 89]
(see equation 1).

( ) ( ) ( )/= - ⋅ +t
¥

-
¥r t r r re 1t

local 0
r,local

and a stacked dye wobbling described by the global
rotation correlation time, or simply put, the biomole-
cule tumbling time, of the host biomolecule [75] (see
equation 2).

( ) ( )/= ⋅ t-r t r e 2t
global local

r, global

The fundamental anisotropy, r ,0 is assumed to be
independent of the chemical environment and is
determined by the relative orientation of excitation
and emission dipoles at time t = 0 s. The global rota-
tion correlation time, t ,r, global may be determined
from the hydrodynamic radius of the host molecule to
further reduce the number of parameters in the fitting
model.

The residual anisotropy accounts for a reduced
depolarisation probability resulting from an energy
barrier that prevents rotational diffusion of the fluor-
ophore beyond a certain cone angle [90]. Steffen et al
showed that the cone angle is defined by the local che-
mical environment, hence by the surface of the host
molecule. Thus, the local complexity of an RNAmole-
cule correlates with an increase in ¥r [75].

Figure 5.Photophysicalmeasurements and computationalmodelling ofNAIFE. (A)Photoisomerisation of cyanine dyes is reduced by
stacking on nucleobases and interactionwith secondary and tertiary structure elements of RNA. (B)The average fluorescence lifetime,
τ , ismodulated depending on the degree of dye-RNA interaction. (C)The rotational correlation time, τr , and the residual anisotropy,
r∞ , reflect themotional restriction of the dye by the RNA. (D) Surface trapping ismodelled by the accessible contact volume (ACV).
(E)An atomic-level description of dye-RNA contacts is provided by in-silico labelling and subsequent (F)molecular dynamics
simulations. Licenses: (A)Adapted from [75]with permission from the PCCPOwner Societies, and, (B-F) from [89] under the terms
of aCreative CommonsCC-BY 4.0 license.
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Closely related to the parameters of the dynamic
anisotropy are the so-called accessible volume (AV)
and the contact volume (CV) of the dyes. The AV
describes the entire explorable space of the dye deter-
mined by its geometric dimensions (linker length, dye
radii) and the associated sterically restricted molecular
space [91, 92]. The CV describes the volume where the
dye and the host molecule interact with each other, for
instance, via stacking or hydrophobic interactions.
The CV is included in the AV and has been introduced
by Steffen et al to provide a new model, termed the
accessible contact volume (ACV) (Figure 5), which
distinguishes between freely rotating and surface-
stacked dye populations [75]. The ratio c =CV

CV

AV
has

been shown to correlate to the local complexity of the
host molecule. The experimental measure is a change
in fluorescence lifetime and dynamic anisotropy.
Here, ¥r characterises the insufficient depolarisation
due to the local chemical environment of the dye and
is ameasure of the cone angle of the CV.

In summary, the more complex the chemical
environment is, the larger cCV becomes. The greater
the CV is, the shorter tr,local and, hence, the greater ¥r
of the dye becomes. Similarly, the occupation of bind-
ing sites for divalent metal ions affects the surface
stacking probability and is thus visible through
NAIFE.

3.2. Stacking-inducedfluorescence increase (SIFI)
A DNA hairpin labelled with sCy3 on a 3′ dT
(figure 4(B)) exhibited increasedfluorescence intensity
that was associated with hairpin closing [93]. By
examining a series of DNA hairpins and duplexes, it
was shown that sCy3 undergoes site-specific stacking
in a nick, gap or overhang region of duplex DNA. The
sCy3 showed changes in fluorescence intensity at both
the ensemble and single-molecule levels, and corresp-
onding changes in fluorescence lifetimes were also
observed at the ensemble level. The increase in
fluorescence intensity or lifetime was attributed to a
reduction in the rate of photoisomerisation upon
stacking and hence was termed stacking-induced
fluorescence increase (SIFI) [93, 94]. This specific
stacking interaction, and the previously reported
stacking of cyanine dyes on the blunt end of duplex
DNA [95, 96], and on G-quadruplexes [97] should be
considered as a subset ofNAIFE (section 3.1).

Double labelling of a DNA hairpin with sCy3 and
sCy5 as a FRET donor and acceptor, respectively,
allowed a direct comparison of FRET and SIFI [94].
With both dyes fluorescently active, a FRET increase
was observed upon hairpin closing, with sCy3 transi-
tioning from high (open hairpin) to lower fluores-
cence intensity (closed hairpin). Following acceptor
photobleaching, the sCy3 continued to exhibit inten-
sity fluctuations but now transitioning from the same
high fluorescence intensity as the FRET-active hairpin
to an even higher intensity, which was due to the

closing of the hairpin, stacking of the sCy3 on DNA
and subsequently a reduction in photoisomerisation.
Analysis of the two-state dynamics using hidden Mar-
kov modelling recovered the same opening and clos-
ing rates using either FRET or SIFI. The ability to
probe such global structural changes using only a sin-
gle dye could be advantageous since it requires less
synthetic modification, less chemical perturbation to
the native behaviour, and frees up a spectral window,
which can be used for combining other fluorescence
measurements.

It was also shown that fluorescence intensities and
lifetimes of sCy3 are extremely sensitive to local chan-
ges at the site of stacking [93]. This was exploited by
designing a DNA structure containing an abasic site in
duplex DNA at distances of �20 nucleotides away
from the sCy3 stacking site. The average fluorescence
lifetime of the sCy3 was found to oscillate as a function
of the distance from the abasic site; this was attributed
to long-range, through-backbone allosteric interac-
tions, which modulate the local sCy3 stacking interac-
tion. This agreed with earlier studies of allostery in
protein-DNA interactions, which showed that the
binding of a protein at one binding site in DNA affec-
ted the binding of a second protein at another site fur-
ther along the duplex [98, 99].

3.3. Unwinding-inducedfluorescence
enhancement (UIFE)
Environment-dependent fluorescence intensity
enhancement of Cy3 has also been exploited to study
the formation of an unwound transcription initiation
bubble comprised of ssDNA segments by RNA poly-
merase (RNAP) as it binds and unwinds promoter
dsDNA. In a first ensemble-level study, Ko and
Heyduk [100] reported that the fluorescence intensity
from a Cy3 strategically placed on promoter DNA
showed a ~two-fold increase upon binding of RNAP.
Subsequently, the Cy3 signature showed a similar
decrease after transcription initiation and promoter
escape. The results and control experiments described
in the same report indicated that the observed
fluorescence intensity increase is due to the unwinding
of dsDNA to ssDNA upon RNAP binding, while a
decrease results from the rewinding of ssDNA to
dsDNA at the -10 promoter region upon promoter
escape. The large ~two-fold fluorescence enhance-
ment in unwinding-induced fluorescence enhance-
ment (UIFE) assays could possibly result from a
combination of binding of RNAP to the promoter
dsDNA, unwinding of promoter dsDNA to ssDNA
segments, and subsequent conformational changes
involving the unwound ssDNA segment and RNAP.
The ensemble assay is simple and straightforward to
implement and has been used extensively in studies
investigating the mechanism of promoter unwinding
and promoter escape in transcription by several
groups [62, 100–103].

9

Methods Appl. Fluoresc. 12 (2024) 012001 EPloetz et al



Later, the Ha lab implemented a single-molecule
UIFE (smUIFE) assay to study the kinetics and mech-
anism of transcription initiation by a phage T7 RNAP
[104]. More recently, similar smUIFE experiments
were used in real-time single-molecule assays investi-
gating the promoter unwinding mechanism by a bac-
terial RNAP (figure 4(C)). Here, the authors
monitored the unwinding kinetics of the upstream
and downstream segments of a promoter fragment to
show that unwinding occurs in steps that proceed
from upstream towards the downstream direction
[74]. The smUIFE assays can potentially be combined
with high-throughput single-molecule studies of large
promoter sequence libraries, enabling a complete dis-
section of the promoter sequence dependence during
this stage of transcription initiation. Similar assays can
also be used in other processes that involve DNA
unwinding and rewinding, such as replication initia-
tion and nucleic acid helicase and topoisomerase
activities. Notably, such assays will carry different sig-
nal contributions from the unwinding and the rewind-
ing process, as well as from the proximity of the
proteinmachinery.

Importantly, fluorescence enhancement mechan-
isms similar to the ones mentioned above for cyanines
exist for other probes. In these cases, stabilisation of
the planar excited state occurs via binding to a mole-
cular scaffold.. These dyes are useful due to their
increased fluorescence upon binding to, e.g., nucleic
acids (e.g., TOTO, YOYO) [105] or to amyloid-like
fibrils (e.g., Thioflavin T [106], Nile red [107]).

4. Towards a consistent nomenclature
for PIFE

As discussed in sections 2 and 3, there are a growing
number of variants of PIFE assays with distinct
acronyms: NAIFE [75], SIFI [93, 94], and UIFE [74].
Importantly, these PIFE variants use the same under-
lying photophysical phenomenon in different biophy-
sical assays. By convention, we assume that the PIFE
dye undergoes photoisomerisation to a weakly emis-
sive state. In general, therefore, an interaction of the
dye with a biomolecule causes a net fluorescence
enhancement relative to some minimally hindered
isomerisation state, such as for a freely diffusing dye.
Additionally, the fluorescence enhancement in the PIFE

acronym implies an effect relative to a standard
isomerisation rate. In fact, the majority of PIFE works
report a fold increase in fluorescence intensity, empha-
sising it is a relative measure. In the absence of an
absolute reference, similar photoisomerisation rates
responsible for fluorescence enhancement in some
assays could effectively lead to quenching (see PIFQ in
section 2.3) in other cases [59].

With these considerations at hand, it would be best
to describe the methods in terms of a general photo-
physical effect, irrespective of the many possible
mechanisms that lead to fluorescence modulation.
The PIFE acronym, however, is now well established.
For that reason, keeping the acronym would be desir-
able while still being consistent with the earlier con-
siderations. We, therefore, suggest re-naming the
methods described here as photoisomerisation-related
fluorescence enhancement (PIFE), as was recently pro-
posed [108]. Although this definition leaves the mole-
cular origin that modulates photoisomerisation (e.g.,
specific interactions, steric obstruction, viscosity)
undefined, the different PIFE methods could still be
specified in a context-dependentmanner if necessary.

Since fluorescence enhancement is relative to
reference samples that are sometimes not well-
defined, one should strive to report PIFE results with
absolute fluorescence intensity rather than relative fold
changes. However, due to the arbitrary dependence of
the intensity on the excitation power and other sour-
ces irrelevant to PIFE, we recommend using similar
dyes that lack the capability to photoisomerise (see
sCy3 versus Cy3B; figure 6(A)) as controls for themax-
imum possible fluorescence enhancement. Alter-
natively, fluorescence lifetimes [9, 109, 110], which
report on PIFE decoupled from any other factors that
influencefluorescence intensity, can be used.

5. PIFE: what’s next?

After establishing the initial concept and its applica-
tion for various biomolecular systems, the remaining
question is where to go next. From an applicative
perspective, the utilisation of PIFE in various emerging
platforms to tackle previously unexplored problems is
experiencing a clear surge. These platforms encompass
a wide range of innovative techniques, such as smPIFE
with continuous repositioning of single molecules

Figure 6.Chemical structures of restrained cyanine dyes. The chemical structures of the rigidified cyanine dyes (A)Cy3B and (B)Cy5B
lack aflexible polymethine chain and do not show anyfluorescence-modulating cis/trans isomerisation. The chemical structures of
the unrestricted sulfo-Cy dyes are highlighted in color.
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within an anti-Brownian electrokinetic trap [111], the
integration of smPIFE with force spectroscopy [112],
the application of PIFE for investigating liquid-liquid
phase separation of the RNA-binding protein FUsed
in Sarcoma (FUS) [113], as well as bio-detection and
sensing applications [114, 115], including the intro-
duction of aptamer-based PIFE [116, 117]. Undoubt-
edly, this surge in the adoption of smPIFE points
towards a promising future of PIFE in the realms of
biomolecular science and biomedical application
development. In the following section, we discuss
important issues that still require attention and also
outline some recent developments: (i) avoiding PIFE
effects, (ii)modelling and simulating PIFE, (iii) devel-
oping new PIFE dyes, (iv) fluorescence lifetime-based
single-molecule PIFE burst analysis (v) combining
PIFE with FRET, and (vi) using PIFE in cellular
imaging.

5.1.On avoiding PIFE
Before discussing how PIFE can be exploited in the
future, we start by considering situations in which
PIFE can or has to be avoided. While the PIFE effect
can be a powerful tool, it has the potential to be a
confounding and undesired variable in various bio-
molecular assays. For example, in a FRET experiment,
the fluorescence enhancement of a cyanine donor
alters the FRET signal, which could be incorrectly
interpreted as a distance change. Furthermore, PIFE
affects the fluorescence QY of the donor and hence
alters the Förster distance, R0, which can result in an
incorrect conversion of FRET efficiencies to inter-dye
distances.

As such, we should be wary of the PIFE effect when
designing non-PIFE fluorescence-based experiments.
The guidance here is essentially the opposite of design-
ing a PIFE experiment, that is to avoid using cyanine
dyes or, if cyanine dyes are used, to strategically place
them such that they will not exhibit a PIFE effect. Con-
veniently, rigidified bridged cyanine dyes have been
and are continuously being developed (e.g., Cy3B,
Cy5B; figure 6) [12, 14], which assist in eliminating the
photoisomerisation as well as in serving as a control
for the maximum PIFE enhancement. For FRET
experiments, there are rhodamine-based alternatives
to the popular donor Cy3 that have similar spectral
and photophysical characteristics but do not exhibit
PIFE. For example, the dye ATTO 550 has been shown
to work well when conjugated to DNA [118], whereas
the dyes Alexa Fluor 546, ATTO 532 and ATTO 643
have been successfully conjugated to proteins for
quantitative smFRET studies [119].

If cyanine dyes are required in non-PIFE fluores-
cence-based experiments, it is often useful to avoid the
PIFE effect by positioning the cyanine dye such that (1)
it is not constrained by its environment, and (2) its
environment does not change upon the event that is to
be observed (i.e., conformational changes, partner

binding). As explained below, dye-specific AV calcula-
tions can be used to assess the labelling positions of
candidate dyes for this purpose. If labelling nucleic
acids, it may be preferable to conjugate cyanine dyes to
internal bases away from ends to avoid stacking effects
onto terminal bases [83, 96] or alternatively to use A/T
andA/Ubase-pairs at those ends and certainly to posi-
tion these dyes away from protein binding footprints
to avoid protein-related PIFE. When labelling a bio-
molecule that undergoes a conformational change,
one should place cyanine dyes away from sites of struc-
tural rearrangement. Alternatively, one could exploit
PIFE to modulate the fluorescence QY of the donor
dye. By increasing the QY and hence R0, one could
measure longer inter-dye distances using FRET. In
either case, if one wishes to convert measured FRET
efficiencies to absolute inter-dye distances, then it
would be required to measure the fluorescence QY [5]
of donor cyanine dyes conjugated to the molecule of
interest and to recalculate R0 using this more accurate
value [120].

5.2.MDSimulations of PIFE
Since PIFE is highly sensitive to the chemical micro-
environment of the dye [18, 59, 93], it is not
straightforward to predict the perfect dye-labelling site
that will generate a robust PIFE signal. Nevertheless, it
is possible to obtain 3D structures of, for instance, a
nucleic acid-protein complex, through structure
determination methods or integrative modelling
approaches (compare figures 7 or 5D-F) [121]. The
obtained models serve as the basis for identifying
optimal labelling sites for PIFE [100, 101]. Different
potential labelling sites can be investigated regarding
the steric hindrance of the dye in the presence of a
protein (figure 7), which remains the best available
predictor of PIFE to date. An approximation of steric
hindrance can be determined by the ratio of the AV
and the CV of the dyes, which can be obtained with
open-source libraries like ‘LabelLib’ [122] or ‘FRETraj’
[89]. In the case of potential dynamic structural
ensembles, coarse-grained molecular dynamics (MD)
simulations, as well as de novo modelling of the
biomolecular structure, are applicable for finding
equilibrium conformations, which, again, serve as the
basis for identifying the optimal labelling site for PIFE.
Thus, an identified potential labelling site that exhibits
a significant change in AV orCVupon protein binding
or conformational change can be selected as a good
starting candidate for the first PIFE experiment (see
figures 7 or 5D-F).

However, molecular structures are rarely static.
In particular, RNA represents a highly dynamic sys-
tem [124] that is inadequately represented by a single
structure. MD simulations of in silico labelled bio-
molecules have enabled the calculation of photo-
physical parameters in this context [89, 125–127].
With the Python-based FRETraj software package,
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the calculation of the multi-AV/ACV and the
dynamic anisotropy along one or an ensemble ofMD
trajectories has become possible [89]. This realisti-
cally captures the dynamic image of both the dye and
the host molecule, and allows the comparison of
simulated data with experiments (see also figure 3).
Data generated in this way do not just predict ideal
labelling positions but also facilitate the interpreta-
tion of PIFE and FRET experiments, as they give an
atomistic picture of the structural rearrangements.

In contrast, the simulation of fluorescence life-
time has only been possible through elaborate
ab initio MD-quantum mechanical (QM) simula-
tions so far and has, therefore, not been considered
for modelling PIFE. Also, the photoisomerisation
probability of the polymethine chain of Cy dyes is
not considered in the current force fields for MD
simulations because only the ground-state structure
of the dyes, and not those of the excited state, are
routinely incorporated into existing MD force fields
[128]. Yet, the prediction of the stacking probability
of Cy dyes in their local chemical environment is
possible by considering the ACV along the MD
trajectory. By simulating the dye movement in an in
silico labelled host molecule, it is possible to visualise
the interaction of the dye with its local chemical
environment and compare the stacking probability
to experimentally accessible parameters such as the
dynamic fluorescence anisotropy. This information
can be used not only in predicting PIFE but also in
correcting the prediction of FRET values when
using Cy dyes [129]. Furthermore, combining PIFE
and FRET will increase the dynamic range for inte-
grative modelling. PIFE reports on the local
environment of the dye, via modification of
the ACV, and thereby complements distance
constraints obtained by FRET to restrict a de novo
generated structural ensemble.

5.3. NewPIFEdyes
As described above, dyes and their properties are at the
heart of PIFE-based assays. So far, most PIFE assays
are based on cyanine dyes and, in particular, Cy3 and
sCy3. Which structural alternatives could serve for
future extensions of PIFE assays? In this regard, the
specific assay type (e.g., ensemble or single molecule)
and other parameters also need to be considered for
future optimisation in terms of dynamic range,
spectral regime, and compatibility with other assays
(see PIFE-FRET below). The dynamic range of PIFE is
governed by brightness changes between the non-
influenced dye (before PIFE occurs) and the fully
‘restricted’ state (with PIFE). These changes can be
increased either by lowering the fluorescence QY of
the dye or promoting restriction by interaction with
the biomolecule. Based on the currently available
fluorophores, a fundamental question is how much
these two states should differ. This is especially
relevant in light of available base-intercalating or
fluorogenic dyes, where fluorescence enhancement
factors of up to 1,000-fold can be achieved [130]. In
that regard, it is unclear how strong fluorescence
suppression in the non-PIFE state should be, knowing
that, at least in single-molecule assays, the non-PIFE
state (and its photon output) can determine howviable
the specific assay is.

In our view, newdyes should thus be developed (or
identified) that feature a wide dynamic range for
proximity-dependent fluorescence enhancement for
use in quantitative PIFE studies. The brightness chan-
ges could be gradual or based onmany different distin-
guishable brightness states, or, alternatively, only
switch between the two extreme states (i.e., non-PIFE
vs. PIFE) for semi-quantitative assays. The former can
be realised by reducing specific interactions between
dye and biomolecule, such that the enhancement of
fluorescence originates exclusively from the steric
restriction. In contrast, the latter ‘on-off’ PIFE sensor

Figure 7.Choosing the labelling site for the PIFE experiment. As an example, the binding reaction of a 93-residue bacterial DNA-
binding protein domain (brown) toDNA (grey) is shown. The snapshot of theDNA-protein complex is generated byCafeMol, a
coarse-grained simulation package[123]. (A)TheAVof the dye in a free or ‘reference’ state is displayed by the green surface, while the
dye attachment site (dT) on theDNA is indicated by the inner dark sphere. (B)TheAVof dye in the bound or ‘PIFE’ state is reduced by
the presence of the bound protein, whichwill likely result in detectable PIFE. (C)The comparison between theAVof the free and
bound states (cf. panels A andB) reveals a volume difference of 23% - represented by the grey surface.

12

Methods Appl. Fluoresc. 12 (2024) 012001 EPloetz et al



could be achieved by specifically promoting the dye-
biomolecule interactions. A target-specific PIFE sen-
sor could be designed by functionalising the core
structure of the dye with various side groups to sense
different domains based on their charge or hydro-
phobicity (e.g., through the addition of cholesterol
anchors) or even detect specific side chains or post-
translationalmodifications.

Furthermore, the interpretation of PIFE assays,
particularly those where quantitative information is
desired, could benefit from a clear determination of
the maximum PIFE fluorescence enhancement. This
requires dyes that can define the maximum PIFE
enhancement, such as rigidified dyes where no photo-
isomerisation is possible, as has been described here
for Cy3B (see also figure 6(A)). This aspect is also rele-
vant for extending PIFE into other spectral regimes
where such control dyes are not yet well established.
Here, developments such as the Cy3B [12] and, more
recently, the Cy5B [14] and Cy7B [131] derivatives
(figure 6(B)) from the Schnermann lab [132] will be
important puzzle pieces for designing new PIFE
assays. In general, one could also envisage other types
of photoswitches that could undergo environment-
sensitive changes in fluorescence properties. For this
to be achieved, many of the hybrid dyes with photo-
switchable properties, such as indigos [133], stilbenes
[134], spiropyrans [135] and hemithioindigos [136],
might be promising candidates. Here, fluorescent
nucleobase analogous that can photoisomerise are of
particular interest, as they can be easily incorporated
in the nucleic acid sequence at the expense of lower
fluorescence QYs [137]. An extended palette of PIFE
dyes with a high dynamic range in different spectral
regimes would allow the combination of PIFE with
other biophysical assays such as FRET (see discussion
below).

5.4. Combining PIFE and FRET as amulti-
proximity ruler
Single-molecule fluorescence-based assays that can
simultaneously read out multiple distances are highly
desirable. Such assays can probe correlated conforma-
tional changes in multi-domain proteins and com-
plexes, monitor conformational changes at both short
and intermediate biomolecular distances, and also
visualise binding-induced conformational rearrange-
ment during complex formation. While multi-colour
FRET approaches can monitor multiple distances
simultaneously, they are based on site-specific label-
ling of at least three fluorescent probes. Labelling with
multiple fluorophores, however, is often hampered by
(i) low labelling efficiencies, (ii)difficulties in achieving
directed site-specific labelling, (iii) too many dye
labelling permutations in statistical labelling, (iv) the
requirement of a sophisticated FRET analysis, and (v)
lowphotostability andfluorescenceQYof the available
dyes, particularly in the UV or NIR ranges. Moreover,

such approaches often lack appropriate FRET pairs
with short Förster distances to probe short-range
distance changes as they occur in real time.

To address these issues, PIFE-FRET was proposed
[138, 139] and later realised in immobilised single-
molecule assays [139–142], where binding in close
proximity to the PIFE-sensitive dye leads to changes in
its fluorescence, without subsequent changes to the
fluorescence of the acceptor dye, and conformational
changes induced anti-correlated changes in donor and
acceptor fluorescence due to changes in FRET. In such
immobilised single-molecule assays, changes in PIFE
are observed in both the donor intensity trajectory and
in the total intensity trajectory of the sumof donor and
acceptor fluorescence intensity while changes in FRET
are observed through the ratio of the acceptor inten-
sity to total intensity. In parallel with the implementa-
tion for immobilised molecules, PIFE-FRET for freely
diffusingmolecules was realised using single-molecule
microsecond alternating laser excitation (μsALEX)
experiments [18, 72] for simultaneously monitoring
the interaction between nucleic acids and proteins and
their associated binding-induced conformational
changes. Here, short-range (<3 nm) surface proximity
sensing via PIFE for probing the protein-DNA interac-
tion and single-molecule FRET as the readout for any
conformational changes in the targeted nucleic acid
was introduced. The reporter dye sCy3 was placed at
the 5’-end of the dsDNA in proximity (<3 nm) to the
binding site of different restriction enzymes
(figures 8(A)–(C). Then, parameters were retrieved
from μsALEX to report on the intra-molecular dis-
tance between the donor and acceptor dyes, and the
inter-molecular proximity of the DNA-binding pro-
tein to a Cy dye. The stoichiometry ratio, S, was used as
a readout for the change in brightness due to PIFE and
could confirm the linear distance dependence for the
binding-induced fluorescence enhancement after dis-
entangling its contribution to FRET. Importantly, a
theoretical framework for the E-S dependence in
PIFE-FRET experiments was developed [18] and
could be employed to report on PIFE and FRET for
each subpopulation.

More recently, a proof of principle experiment was
presented [143], in which smFRET and PIFE were
combined to simultaneously probe conformational
changes within single protein domains during their
interaction with neighbouring protein domains. As an
example, the inter- and intra-domain interactions in
the tandem substrate-binding domains (SBDs) 1 and 2
of the bacterial ABC import systemGlnPQwere visua-
lised (figures 8(D)–(F)). Here, smFRET served to
monitor the conformational state of one domain
(SBD2) while PIFE probed its interaction with the
neighboring domain SBD1.

While FRET is a directional process occurring
from a donor dye to an acceptor dye, PIFE can occur in
any of the two dyes or in both dyes at the same time,
depending on the type of dyes used. To derive accurate
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Figure 8. Single-molecule PIFE-FRETmonitored byμsALEX spectroscopy. (A)–(C)Protein-nucleic acid interaction. (A)DyeAV
calculation for sCy3 attached at the 5’-end in the presence of BamHI bound to dsDNA. (B)E-S 2Dhistograms and (C) Stoichiometry
change due to PIFE for BamHI and EcoRVbound to dsDNA as a function of the proximity of the sCy3 dye from the palindromic
binding sequence. (D)–(F)Protein-protein interaction probed by PIFE-FRETbetween substrate-binding domains 1 and 2 of the
bacterial ABC importer GlnPQ. (D)Assay for SBD2 as an isolated domain and in tandemwith SBD1. (E)Working principles to probe
conformations and interaction between SBD1 and SBD2 via PIFE-FRET. (F)PIFE occurs between both domains for shortened linker
length in the open and substrate-bound state of SBD2. (G)Disentangling of PIFE and FRET in PIFE-FRET assays. Accurate FRET and
PIFE-enhancement for BamHI and the polymerase gp5/trx andBamHI on dsDNA. Licenses: A-C,)Reprinted fromPloetz, Lerner
et al [72] under the terms of anACSAuthorChoice License. D-F)Reprinted fromPloetz, Schuurman-Wolters et al [143] under the
terms of theCreative CommonsCC-BY License 4.0. G)Reprinted fromLerner, Ploetz et al [18] (https://pubs.acs.org/doi/10.1021/
acs.jpcb.6b03692) under the terms of theCreative CommonsCC-BY License 4.0. Further permissions related to thematerial
excerpted should be directed to theACS.
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FRET values, and hence inter-dye distances, it is desir-
able to restrict PIFE to one dye only and keep the other
dye as an environmentally insensitive dye. PIFE mod-
ulates the photoisomerisation rates and, accordingly,
the fluorescence QY of the affected dye. While accep-
tor-based PIFE will lead to a shift in the μsALEX stoi-
chiometry ratio, independent of the FRET process that
might happen in parallel, donor-based PIFE will lead
to an alteration of R0, as well as the γ correction factor,
which accounts for the differences in donor and
acceptor dye fluorescence QYs and detection effi-
ciencies. Using a single PIFE-sensitive dye, it was
shown that it is possible to disentangle FRET from
PIFE (figure 8(G)) and determine the protein-specific
PIFE effect as long as only one of the dyes is affected
[18, 72]. Regardless, due to the independence of FRET
and PIFE in acceptor-based PIFE-FRET, such an assay
is more desirable. However, potential dyes for PIFE
that can act as FRET acceptors usually have excitation
and emission spectra shifted to the red relative to sCy3,
with more conjugated π bonds within the poly-
methine chain. This, in turn, might influence the effi-
ciency of photoisomerisation. Indeed, such dyes (e.g.,
Cy5, Alexa Fluor 647) were tested, and it was found
that the dynamic range in PIFE is smaller relative to
that of sCy3 [72]. Alternatively, a combination of any
blue donor dye (e.g., Alexa Fluor 488 or ATTO 488)
that does not exhibit microenvironment-sensitive
fluorescence, with Cy3 or sCy3 as an acceptor dye,
might serve as the basis for acceptor-based PIFE-FRET
applications. Another possibility in which PIFE-FRET
can be useful is diffusion-based analysis of brightness
changes in a PIFE-sensitive dye, assuming that the two
FRET dyes are separated on one biomolecule at an
inter-dye distance larger than the dynamic range of
FRET. In this case, it is possible to use μsALEX to
determine PIFE or other fluorescence modulation
effects [72]. Here, the stoichiometry ratio, S, directly
reports on the brightness change of one dye using the
constant intensity of the acceptor dye as an internal
reference.

Despite the difficulties in PIFE-FRET experiments
where both dyes can be PIFE-sensitive, such as the
combination of a Cy3 donor and a Cy5 acceptor,
recent reports show the usefulness of this approach, at
least in immobilised single-molecule assays, in sensing
binding through both the donor dye and the acceptor
dye, while reporting on conformational changes
through FRET [144]. Recently, the quantitative inter-
pretation of such donor-and-acceptor-PIFE-FRET
experiments has been challenged through the use of a
hiddenMarkovmodel approach suggested for the tan-
dem analysis of both donor and acceptor PIFE changes
and FRET changes [145].

5.5. Lifetime-based PIFE
In almost all intensity-based assays, PIFE is assessed as
a relative effect. This is seen through the requirement
to calibrate the values of relative stoichiometry ratios
in PIFE-FRET. Alternatively, smPIFE measurements
can be performed without relying on fluorescence
intensities, analogous to the approach taken pre-
viously at the ensemble level using fluorescence life-
times (seefigures 1 and 3 and section 3.2). As described
earlier, lifetime-based PIFE removes the reliance on
the intensity parameter, which could be affected by
factors other than photoisomerisation. Under the
assumption that the major reason for modulating the
mean fluorescence lifetime is changes in photoisome-
risation, lifetime-based assays can report solely on
PIFE effects relative to a minimal mean fluorescence
lifetime value. Therefore, even in lifetime-based PIFE,
the results are not absolute but relative to some basal
fluorescence lifetime values that are most probably
system-specific.

For single-molecule experiments, a parameter
equivalent to the mean fluorescence lifetime of the
PIFE dye, themean photon nanotime, can be reported
per single-molecule photon burst (figure 9). Indeed,
such lifetime-based smPIFE studies have emerged, in
which the reported data is shown as a histogram of
sCy3 mean nanotimes per single-molecule burst

Figure 9.Probing PIFEwithin bursts in single-molecule fluorescence experiments. (A)Divisor-approach for analysingwithin-burst
fluorescence lifetime dynamics. (B)MpH2MManalysis of the unboundα-synmonomer labelled at positions 26 and 56with sCy3
provides histograms ofmean nanotimes of state dwells. License: Reprinted fromHarris PD&Lerner E, ‘Identification and
quantification of within-burst dynamics in singly labelled single-molecule fluorescence lifetime experiments’, 2:100071, Copyright
(2022) [146], with permission fromElsevier.
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[109, 110]. These histograms often exhibit sub-popu-
lations, which clearly report on instances in which dif-
ferent degrees of PIFE have been reported. Then, upon
careful consideration of the results, they can be inter-
preted as groups of molecules exhibiting different
local structures in the vicinity of the sCy3-conjugated
residue, leading to different degrees of steric obstruc-
tion of the sCy3 excited-state cis-trans isomerisation.

SmPIFE, like other single-molecule fluorescence-
based detection methods, can be performed with
immobilised or diffusing molecules (figure 9). Immo-
bilised single-molecule assays for tracking the trajec-
tory of the dye fluorescence lifetime were first
introduced for smPIFE measurements to monitor
slow dynamics between intermediate states in DNA
transcription [147]. As for diffusion-based single-
molecule assays, the acquisition of burst data from sin-
gle diffusing molecules is usually performed using
point detectors, which provide ps precision on photon
nanotimes and typical time between consecutive pho-
tons of a few μs. A dye-labelled biomolecule can
undergo a conformational transition while traversing
the confocal volume. If these different conformations
are associated with changes in the degree of PIFE
experienced by the dye-labelled residue and, con-
comitantly, with a difference in fluorescence bright-
ness or lifetime, this will result in single-molecule
fluorescence bursts exhibiting within-burst dynamics
[146, 148–151]. In such scenarios, the mean fluores-
cence brightness or lifetime might not report on the
values representing either of the conformations but
rather on a time average of the conformations. Many
tools have been developed in the last two decades for
analysing smFRET burst measurements and, more
specifically, for identifying and even quantifying the
underlying dynamics. These approaches are sum-
marised in recent reviews of the smFRET field
[152, 153].

Harris and Lerner have extended an approach to
identify and quantify within-burst dynamics [154],
originally introduced by Haran and co-workers, pho-
ton-by-photon hidden Markov modelling (H2MM)
[149]. Using this extended approach, termed multi-
parameter H2MM (mpH2MM), and inspired by the
work of Antonik and co-workers [155], it became pos-
sible to quantitatively analyse 'within-burst' fluores-
cence dynamics of smFRET but also lifetime-based
PIFE dynamics [146]. Using this approach, they have
shown the unbound α-synuclein monomer exhibits
PIFE dynamics on the timescale of a few ms
(figure 9(B)), which point towards dynamics occur-
ring in the vicinity of and affecting the Cy3-labelled
residues [108–110]. It may be envisaged that smPIFE
will undergo similar advancements as smFRET did,
pushing the limits of PIFE for reporting dynamics of
local effects in the 0-3 nmproximity range.

5.6. Taking PIFE into the cell
An exciting question is whether PIFE can actually be
taken to the cell. The feasibility of this idea is supported
by the successful delivery of dye-labelled DNA and
proteins into cells via physical methods (e.g., electro-
poration, microinjection), e.g., for single-molecule
studies [156–159]. Furthermore, in-cell labelling has
become possible using bio-orthogonal labelling
approaches [160] and various self-labelling protein
tags [161–164]. However, the feasibility of in-cell PIFE
assays to derive meaningful information is impacted
by twomajor factors: (i) cells feature distinct and quite
heterogeneous viscosities in different compartments
and strongly differ from dilute buffer conditions, (ii)
nonspecific and unwanted interactions ofmacromole-
cules with the PIFE-probe are possible within a cell.
Consequently, the desired PIFE effects that monitor,
for instance, a binding event of the PIFE-probe to its
target, need to be distinguished from viscosity-driven
effects in different cell compartments or unwanted
‘background’-binding of the PIFE-probe to other
cellularmacromolecules.

To solve these problems, one could envision a
ratiometric type of PIFE assay where a second dye is
used as an internal photophysical standard (as done in
PIFE-FRET for large donor-acceptor separations;
figure 8(A)). An initial mapping of PIFE-related
brightness or lifetime ratios in the cells will indicate
whether there are cellular regions with variable
PIFE effects. Such regions may also be highlighted by
fluctuations in the signal when it moves inside the cell.
To distinguish between the effects of viscosity and
interaction, translational diffusion of the sensor, in
contrast to immobilised phases, might be used as addi-
tional information. Purely viscosity-driven effects
should not lead to probe immobilisation and may or
may not be linked to a clear diffusion change. Another
readout might be a change in the sensor diffusivity if
the target is reasonably large relative to the sensor,
which may also exhibit a PIFE effect due to target
proximity. One can also envision similar experiments
with labelled antibodies or aptamers binding to their
targets. The clarity of the observables and the inter-
pretation will depend on the timescales of the interac-
tions and the diffusivity of molecular sensors and
targets.

While the proposed probe designs could be envi-
sioned in distinguishing between nonspecific viscosity
effects and specific interaction effects in the context of
in-cell PIFE measurements, we are sure that other
designs can also be considered for specific biological
questions and cellular contexts. In general, we believe
that there is considerable scope to bring PIFE into the
cell, and we believe that examples of intracellular PIFE
should emerge in the near future.
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6. Conclusion

Assays based on PIFE have found widespread use in
biophysical and biochemical research. This review has
brought together a community of active contributors to
discuss themost recentdevelopments and future avenues
of this field. The main mechanistic aspects of PIFE were
summarised, including how it was conceived and devel-
oped. Furthermore, the diverse applications of PIFE in
biophysical andbiochemical assayswere discussed show-
ing the bright future of PIFE as a tool to investigate
biomolecular structures, their dynamics and interac-
tions. Our work also led to the proposal to change the
acronym PIFE to photoisomerisation-related fluorescence
enhancement, reflecting the underlying photochemical
mechanism rather than specific applications. We hope
that this work will motivate new researchers to con-
tribute to this prospering field through the design,
synthesis, and exploitation of new photo-responsive
dyes, and the development of novel assays and quantita-
tive approaches usingPIFE.
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